Recent advances in generative image restoration (IR) have demonstrated impressive results. However, these methods are hindered by their substantial size and computational demands, rendering them unsuitable for deployment on edge devices. This work introduces ELIR, an Efficient Latent Image Restoration method. ELIR addresses the distortion-perception trade-off within the latent space and produces high-quality images using a latent consistency flow-based model. In addition, ELIR introduces an efficient and lightweight architecture. Consequently, ELIR is 4$\times$ smaller and faster than state-of-the-art diffusion and flow-based approaches for blind face restoration, enabling a deployment on resource-constrained devices. Comprehensive evaluations of various image restoration tasks and datasets show that ELIR achieves competitive performance compared to state-of-the-art methods, effectively balancing distortion and perceptual quality metrics while significantly reducing model size and computational cost. The code is available at: https://github.com/eladc-git/ELIR
翻译:生成式图像复原(IR)领域的最新进展已展现出令人瞩目的成果。然而,这些方法受限于其庞大的模型规模与计算需求,难以在边缘设备上部署。本研究提出ELIR,一种高效的潜在图像复原方法。ELIR在潜在空间中解决了失真与感知质量的权衡问题,并采用基于潜在一致性流的模型生成高质量图像。此外,ELIR引入了一种高效轻量的网络架构。因此,在盲人脸复原任务中,ELIR的模型大小与运行速度相比当前最先进的扩散模型和流匹配方法均提升4倍,使其能够在资源受限的设备上部署。通过对多种图像复原任务与数据集的综合评估表明,ELIR在保持与前沿方法相当性能的同时,有效平衡了失真度与感知质量指标,并显著降低了模型规模与计算成本。代码已开源:https://github.com/eladc-git/ELIR