In this paper, we consider the problem of testing the equality of two multivariate distributions based on geometric graphs constructed using the interpoint distances between the observations. These include the tests based on the minimum spanning tree and the $K$-nearest neighbor (NN) graphs, among others. These tests are asymptotically distribution-free, universally consistent and computationally efficient, making them particularly useful in modern applications. However, very little is known about the power properties of these tests. In this paper, using the theory of stabilizing geometric graphs, we derive the asymptotic distribution of these tests under general alternatives, in the Poissonized setting. Using this, the detection threshold and the limiting local power of the test based on the $K$-NN graph are obtained, where interesting exponents depending on dimension emerge. This provides a way to compare and justify the performance of these tests in different examples.


翻译:在本文中,我们考虑了测试两个多变量分布的等值问题,这两个多变量分布基于利用观测之间的间距构造的几何图形。 其中包括基于最小横幅树和美元最近的相邻图等的测试。 这些测试是零星分布、普遍一致和计算效率的, 使得这些测试在现代应用中特别有用。 但是,对这些测试的功率特性知之甚少。 在本文中,我们使用稳定几何图理论,在普瓦森化的环境下,根据一般替代方法, 得出这些测试的无症状分布。 使用这个方法, 检测阈值和基于$- 美元最近的近邻图的局部功率, 获得的测试的局部功率因大小而异。 这为在不同例子中比较和论证这些测试的性能提供了一种方法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2020年12月18日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月22日
Arxiv
0+阅读 · 2021年4月21日
Arxiv
0+阅读 · 2021年4月21日
Arxiv
18+阅读 · 2020年7月13日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2020年12月18日
【DeepMind】强化学习教程,83页ppt
专知会员服务
148+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员