VIP内容

主题: Locally Masked Convolution for Autoregressive Models

摘要: 高维生成模型具有许多应用程序,包括图像压缩,多媒体生成,异常检测和数据完成。自然图像的最新估算器是自回归的,可将像素上的联合分布分解为由深度神经网络(例如,神经网络)参数化的条件乘积。卷积神经网络,例如PixelCNN。但是,PixelCNN仅对关节的单个分解建模,并且只有单个生成顺序是有效的。对于诸如图像完成的任务,这些模型无法使用很多观察到的上下文。为了以任意顺序生成数据,我们引入了LMConv:对标准2D卷积的简单修改,允许将任意蒙版应用于图像中每个位置的权重。使用LMConv,我们可以学习分布估计器的集合,这些估计器共享参数但生成顺序有所不同,从而提高了全图像密度估计的性能(无条件CIFAR10为2.89 bpd),以及全局一致的图像完成度。

成为VIP会员查看完整内容
0
11
Top