智能视频监控(IVS)是当前计算机视觉和机器学习领域的一个活跃研究领域,为监控操作员和取证视频调查者提供了有用的工具。人的再识别(PReID)是IVS中最关键的问题之一,它包括识别一个人是否已经通过网络中的摄像机被观察到。PReID的解决方案有无数的应用,包括检索显示感兴趣的个体的视频序列,甚至在多个摄像机视图上进行行人跟踪。文献中已经提出了不同的技术来提高PReID的性能,最近研究人员利用了深度神经网络(DNNs),因为它在类似的视觉问题上具有令人信服的性能,而且在测试时执行速度也很快。鉴于再识别解决方案的重要性和广泛的应用范围,我们的目标是讨论在该领域开展的工作,并提出一项最先进的DNN模型用于这项任务的调查。我们提供了每个模型的描述以及它们在一组基准数据集上的评估。最后,我们对这些模型进行了详细的比较,并讨论了它们的局限性,为今后的研究提供了指导。

成为VIP会员查看完整内容
81

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
70+阅读 · 2020年6月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
281+阅读 · 2020年5月8日
专知会员服务
201+阅读 · 2020年3月6日
独家 | 基于深度学习的行人重识别研究综述
AI科技评论
11+阅读 · 2017年12月20日
VIP会员
相关VIP内容
最新《自然场景中文本检测与识别》综述论文,26页pdf
专知会员服务
70+阅读 · 2020年6月10日
元学习(meta learning) 最新进展综述论文
专知会员服务
281+阅读 · 2020年5月8日
专知会员服务
201+阅读 · 2020年3月6日
微信扫码咨询专知VIP会员