清华大学孙茂松课题组:《图神经网络: 方法与应用》综述论文,20页pdf

2018 年 12 月 23 日 专知
清华大学孙茂松课题组:《图神经网络: 方法与应用》综述论文,20页pdf

【导读】今年以来,DeepMind、Google大脑、MIT等各大研究机构相继发表了一系列的关于图深度学习的论文,包括关系性RNN、关系性深度强化学习、图卷积神经网络等,是当前的研究热点。最近,清华大学孙茂松老师课题组在ArXiv上发表了一篇《图神经网络》综述论文,详细全面总结了最新图神经网络的模型,应用和未来研究方向,是研究该领域的重要的参阅资料。

请关注专知公众号(点击上方蓝色专知进行关注)

  • 后台回复“GNNMA” 就可以获取图神经网络综述论文pdf下载链接




图神经网络

网址:

http://www.zhuanzhi.ai/paper/488d7f3542ddb0fbda2d94de0a95f882

摘要

很多学习任务都需要处理图形数据,这些数据包含了元素之间丰富的关系信息。建模物理系统,学习分子指纹,预测蛋白质界面,以及疾病分类都需要模型从图形输入中学习。在从文本、图像等非结构化数据学习等领域,对提取出的句子依赖树、图像场景图等结构进行推理是一个重要的研究课题,也需要图形推理模型。图神经网络(GNNs)是一种连接主义模型,它通过在图的节点之间传递消息来获取图的依赖性。与标准神经网络不同的是,图神经网络保留了一种状态,这种状态可以用任意深度表示邻居的信息。虽然原始图神经网络很难训练成定点,但是最近在网络结构、优化技术和并行计算方面的进展使得利用它们进行成功的学习成为可能。近年来,基于图卷积网络(GCN)和门控图神经网络(GGNN)的系统在上述许多任务上都表现出了突破性的性能。在本研究中,我们对现有的图神经网络模型进行了详细的回顾,系统地对其应用进行了分类,并提出了四个有待进一步研究的问题。

图神经网络概览

-END-

专 · 知

   专知开课啦!《深度学习: 算法到实战》, 中科院博士为你讲授!




加入专知人工智能服务群: 欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询!


请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
34

相关内容

孙茂松,教授,博士生导师,曾任清华大学计算机科学与技术系系主任,现任教育部在线教育研究中心副主任、清华大学计算机系党委书记、清华大学大规模在线开放教育研究中心主任。国家重点基础研究发展计划项目首席科学家、国家社会科学基金重大项目首席专家、教育部在线教育研究中心副主任、教育部教学信息化与教学方法创新指导委员会副主任委员、清华大学大规模在线教育研究中心主任、清华大学-新加坡国立大学下一代搜索技术联合研究中心共同主任。研究领域包括自然语言处理、人工智能、机器学习、社会计算和计算教育学。个人主页:http://nlp.csai.tsinghua.edu.cn/site2/index.php/zh/people?id=16

题目: Graph Neural Networks: A Review of Methods and Applications

摘要: 许多学习任务都需要处理包含元素间丰富关系信息的图形数据。建模物理系统、学习分子指纹、预测蛋白质界面和疾病分类需要一个模型从图形输入中学习。在文本、图像等非结构化数据的学习等领域,对句子的依存树、图像的场景图等提取的结构进行推理是一个重要的研究课题,同时也需要建立图形推理模型。图神经网络(GNNs)是通过图节点之间的信息传递来获取图的依赖性的连接模型。与标准神经网络不同,图神经网络保留了一种状态,这种状态可以以任意深度表示来自其邻域的信息。虽然原始GNNs已经被发现很难训练到固定的点,但是最近在网络结构、优化技术和并行计算方面的进展已经使它能够成功地学习。近年来,基于图形卷积网络(GCN)、图形注意网络(GAT)、门控图形神经网络(GGNN)等图形神经网络变体的系统在上述许多任务上都表现出了突破性的性能。在这项调查中,我们提供了一个详细的检讨现有的图形神经网络模型,系统分类的应用,并提出了四个开放的问题,为今后的研究。

作者简介: Jie Zhou,CS的研究生,从事系统研究,主要研究计算机安全。他毕业于厦门大学,在罗切斯特大学获得硕士学位及博士学位。

Zhiyuan Liu,清华大学计算机系NLP实验室副教授。

成为VIP会员查看完整内容
0
76

题目: Graph Neural Networks:A Review of Methods and Applications

简介: 许多学习任务需要处理图形数据,该图形数据包含元素之间的关系信息。对物理系统进行建模,学习分子指纹,预测蛋白质界面以及对疾病进行分类,都需要从图输入中学习模型。在诸如从文本和图像之类的非结构数据中学习的其他领域中,对提取结构的推理,例如句子的依存关系树和图像的场景图,是一个重要的研究课题,它也需要图推理模型。图神经网络(GNN)是连接器模型,可通过在图的节点之间传递消息来捕获图的依赖性。与标准神经网络不同,图神经网络保留一种状态,该状态可以表示来自其邻域的任意深度的信息。尽管已经发现难以训练原始图神经网络来固定点,但是网络体系结构,优化技术和并行计算的最新进展已使他们能够成功学习。近年来,基于图卷积网络(GCN)和门控图神经网络(GGNN)的系统已经在上述许多任务上展示了突破性的性能。在本综述中,我们对现有的图神经网络模型进行了详细的回顾,对应用程序进行了系统分类,并提出了四个未解决的问题,供以后研究。

作者简介: 周杰,教授,清华大学自动化系党委书记,教授,博士生导师。

成为VIP会员查看完整内容
0
301
小贴士
相关资讯
相关VIP内容
【新书】图神经网络导论,清华大学刘知远老师著作
专知会员服务
231+阅读 · 2020年6月12日
专知会员服务
100+阅读 · 2020年3月10日
相关论文
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui,Zhenan Sun,Yonggang Wen,Dacheng Tao,Jieping Ye
39+阅读 · 2020年1月20日
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
11+阅读 · 2019年11月6日
Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks
Vineet Kosaraju,Amir Sadeghian,Roberto Martín-Martín,Ian Reid,S. Hamid Rezatofighi,Silvio Savarese
3+阅读 · 2019年7月17日
Kamran Kowsari,Kiana Jafari Meimandi,Mojtaba Heidarysafa,Sanjana Mendu,Laura E. Barnes,Donald E. Brown
11+阅读 · 2019年6月25日
Aravind Sankar,Yanhong Wu,Liang Gou,Wei Zhang,Hao Yang
38+阅读 · 2019年6月15日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
8+阅读 · 2019年3月10日
HyperGCN: Hypergraph Convolutional Networks for Semi-Supervised Classification
Naganand Yadati,Madhav Nimishakavi,Prateek Yadav,Anand Louis,Partha Talukdar
10+阅读 · 2018年9月7日
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
Hongwei Wang,Fuzheng Zhang,Jialin Wang,Miao Zhao,Wenjie Li,Xing Xie,Minyi Guo
6+阅读 · 2018年8月7日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
4+阅读 · 2018年1月10日
Top