在现代监督学习中,如何在训练数据稀缺的新领域学习预测模型是一个日益严峻的挑战。这激励开发领域适应方法,利用已知领域(源领域)中的知识,以适应具有不同概率分布的新领域(目标领域)。当源和目标域处于异构特征空间(称为异构域适应(HDA))时,这就变得更具挑战性。虽然大多数HDA方法利用数学优化将源数据和目标数据映射到一个共同的空间,但它们具有较低的可转移性。神经表征已被证明更具可转移性;然而,它们主要是为同类环境设计的。基于区域适应理论,我们提出了一种新的框架——异构对抗性神经域适应(Heterogeneous Adversarial Neural domain adaptation, HANDA),以有效地最大化异质性环境下的可迁移性。HANDA在统一的神经网络体系结构中进行特征和分布对齐,通过对抗核学习实现域不变性。在主要的图像和文本电子商务基准测试中,我们进行了三个实验,以评估与最先进的HDA方法相比的性能。HANDA显示了统计上显著的预测性能改善。HANDA的实际效用在真实世界的暗网在线市场中得到了展示。HANDA是电子商务应用领域成功适应的重要一步。

https://arxiv.org/pdf/2205.07853.pdf

成为VIP会员查看完整内容
13

相关内容

【ICML2022】几何多模态对比表示学习
专知会员服务
43+阅读 · 2022年7月17日
【ICML2022】MetAug:通过元特征增强的对比学习
专知会员服务
24+阅读 · 2022年5月20日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
14+阅读 · 2022年3月4日
专知会员服务
40+阅读 · 2021年5月24日
专知会员服务
27+阅读 · 2020年12月15日
专知会员服务
41+阅读 · 2020年12月1日
近期必读的七篇 ECCV 2020【少样本学习(FSL)】相关论文
【ICLR2022-MIT】图关系域适应
专知
1+阅读 · 2022年2月9日
AAAI 2022 | 面向图数据的对抗鲁棒性研究
专知
1+阅读 · 2022年1月4日
ICLR'21 | GNN联邦学习的新基准
图与推荐
11+阅读 · 2021年11月15日
KDD 2019论文解读:异构信息网络上的对抗生成学习
云栖社区
22+阅读 · 2019年8月21日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
25+阅读 · 2018年8月19日
VIP会员
相关VIP内容
【ICML2022】几何多模态对比表示学习
专知会员服务
43+阅读 · 2022年7月17日
【ICML2022】MetAug:通过元特征增强的对比学习
专知会员服务
24+阅读 · 2022年5月20日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
14+阅读 · 2022年3月4日
专知会员服务
40+阅读 · 2021年5月24日
专知会员服务
27+阅读 · 2020年12月15日
专知会员服务
41+阅读 · 2020年12月1日
近期必读的七篇 ECCV 2020【少样本学习(FSL)】相关论文
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员