As an important branch in Recommender System, occasional group recommendation has received more and more attention. In this scenario, each occasional group (cold-start group) has no or few historical interacted items. As each occasional group has extremely sparse interactions with items, traditional group recommendation methods can not learn high-quality group representations. The recent proposed Graph Neural Networks (GNNs), which incorporate the high-order neighbors of the target occasional group, can alleviate the above problem in some extent. However, these GNNs still can not explicitly strengthen the embedding quality of the high-order neighbors with few interactions. Motivated by the Self-supervised Learning technique, which is able to find the correlations within the data itself, we propose a self-supervised graph learning framework, which takes the user/item/group embedding reconstruction as the pretext task to enhance the embeddings of the cold-start users/items/groups. In order to explicitly enhance the high-order cold-start neighbors' embedding quality, we further introduce an embedding enhancer, which leverages the self-attention mechanism to improve the embedding quality for them. Comprehensive experiments show the advantages of our proposed framework than the state-of-the-art methods.


翻译:作为建议者系统的一个重要分支,偶发团体建议得到越来越多的关注。在这种情形下,每个偶发团体(冷启动团体)没有或很少具有历史互动的项目。由于每个偶发团体与项目的互动极为稀少,传统团体建议方法无法学习高质量的团体代表。最近提出的纳入目标对象群体高端邻居的图像神经网络(GNNs)在某种程度上可以缓解上述问题。然而,这些GNNs仍然不能明确加强高端邻居的嵌入质量,而很少有互动。在自我监督学习技术的推动下,我们提出一个自我监督的图表学习框架,将用户/项目/团体嵌入重建作为加强冷启动用户/项目/群体嵌入的借口任务。为了明确加强高端冷启动邻居嵌入质量,我们进一步引入了嵌入增强器,利用自控机制改进数据本身的嵌入质量。全面实验显示了我们拟议的国家框架的优势,而不是国家框架的优势。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年8月5日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
14+阅读 · 2020年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员