为工程师写的机器学习简介(A Brief Introduction to Machine Learning for Engineers)

https://arxiv.org/abs/1709.02840

摘要

本专著的目标是介绍机器学习领域内的关键概念、算法和理论框架,涵盖了监督学习与无监督学习、统计学习理论、概率图模型和近似推断等方向。本专著的目标读者是具有概率学和线性代数背景的电气工程师。本书基于第一原理(first principle)写作,并按照有清晰定义的分类方式对其中的主要思想进行了组织,其中的类别包含鉴别式模型和生成式模型、频率论者和贝叶斯方法、准确推断和近似推断、有向模型和无向模型、凸优化和非凸优化。本书中的数学框架使用了信息论的描述方式,以便工具具有统一性。书中提供了简单且可重复的数值示例,以便读者了解相关的关键动机和结论。本专著的目的并不是要为每个特定类别中已有的大量解决方案提供详尽的细节描述(这些描述读者可参阅教科书和论文了解),而是为了给工程师提供一个切入点,以便他们能借此进一步深入机器学习相关文献。

成为VIP会员查看完整内容
0
39

相关内容

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
45

本书介绍了自由软件Python及其在统计数据分析中的应用。它涵盖了连续、离散和分类数据的常见统计测试,以及线性回归分析和生存分析和贝叶斯统计的主题。每个测试的Python解决方案的工作代码和数据,以及易于遵循的Python示例,可以被读者复制,并加强他们对主题的直接理解。随着Python生态系统的最新进展,Python已经成为科学计算的一种流行语言,为统计数据分析提供了一个强大的环境,并且是R的一个有趣的替代选择。本书面向硕士和博士学生,主要来自生命和医学科学,具有统计学的基本知识。由于该书还提供了一些统计方面的背景知识,因此任何想要执行统计数据分析的人都可以使用这本书。

成为VIP会员查看完整内容
0
32

作为布尔逻辑的替代

虽然逻辑是理性推理的数学基础和计算的基本原理,但它仅限于信息既完整又确定的问题。然而,许多现实世界的问题,从金融投资到电子邮件过滤,本质上是不完整或不确定的。概率论和贝叶斯计算共同提供了一个处理不完整和不确定数据的框架。

不完全和不确定数据的决策工具和方法

贝叶斯编程强调概率是布尔逻辑的替代选择,它涵盖了为真实世界的应用程序构建概率程序的新方法。本书由设计并实现了一个高效概率推理引擎来解释贝叶斯程序的团队编写,书中提供了许多Python示例,这些示例也可以在一个补充网站上找到,该网站还提供了一个解释器,允许读者试验这种新的编程方法。

原则和建模

只需要一个基本的数学基础,本书的前两部分提出了一种新的方法来建立主观概率模型。作者介绍了贝叶斯编程的原理,并讨论了概率建模的良好实践。大量简单的例子突出了贝叶斯建模在不同领域的应用。

形式主义和算法

第三部分综合了已有的贝叶斯推理算法的工作,因为需要一个高效的贝叶斯推理引擎来自动化贝叶斯程序中的概率演算。对于想要了解贝叶斯编程的形式主义、主要的概率模型、贝叶斯推理的通用算法和学习问题的读者,本文提供了许多参考书目。

常见问题

第四部分连同词汇表包含了常见问题的答案。作者比较了贝叶斯规划和可能性理论,讨论了贝叶斯推理的计算复杂性,讨论了不完全性的不可约性,讨论了概率的主观主义和客观主义认识论。

贝叶斯计算机的第一步

创建一个完整的贝叶斯计算框架需要新的建模方法、新的推理算法、新的编程语言和新的硬件。本书着重于方法论和算法,描述了实现这一目标的第一步。它鼓励读者探索新兴领域,例如仿生计算,并开发新的编程语言和硬件架构。

成为VIP会员查看完整内容
0
51

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
45

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
87

【导读】IanGoodfellow、YoshuaBengio、AaronCourville的《深度学习》花书被奉为AI圣经。但是要掌握这本书却并非易事。MingchaoZhu同学基于数学推导和产生原理重新描述了书中的概念,并用Python (numpy 库为主) 复现了书本内容,在Github上开放,欢迎大家查看学习。

Deep Learning

深度学习》是深度学习领域唯一的综合性图书,全称也叫做深度学习 AI圣经(Deep Learning),由三位全球知名专家IanGoodfellow、YoshuaBengio、AaronCourville编著,全书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,深度学习全书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型,适用于相关专业的大学生或研究生使用。

可以下载《深度学习》的中文版pdf和英文版pdf直接阅读。


《深度学习》可以说是深度学习与人工智能的入门宝典,许多算法爱好者、机器学习培训班、互联网企业的面试,很多都参考这本书。但本书晦涩,加上官方没有提供代码实现,因此某些地方较难理解。本站基于数学推导和产生原理重新描述了书中的概念,并用Python (numpy 库为主) 复现了书本内容(推导过程和代码实现均见pdf文件,重要部分的实现代码也放入code文件夹中)。

然而我水平有限,但我真诚地希望这项工作可以帮助到更多人学习深度学习算法。我需要大家的建议和帮助。如果你在阅读中遇到有误或解释不清的地方,希望可以汇总你的建议,提issue (最好不要一个一个地提)。如果你也想加入这项工作书写中或有其他问题,可以联系我的邮箱:deityrayleigh@gmail.com。

写的过程中参考了较多网上优秀的工作,所有参考资源保存在了reference.txt文件中。

| 中文章节 | 英文章节 | 下载
(含推导与代码实现) | | ------------ | ------------ | ------------ | | 第一章 前言 | 1 Introduction | | | 第二章 线性代数 | 2 Linear Algebra | pdf | | 第三章 概率与信息论 | 3 Probability and Information Theory | pdf | | 第四章 数值计算 | 4 Numerical Computation | pdf | | 第五章 机器学习基础 | 5 Machine Learning Basics | pdf | | 第六章 深度前馈网络 | 6 Deep Feedforward Networks | pdf | | 第七章 深度学习中的正则化 | 7 Regularization for Deep Learning | pdf | | 第八章 深度模型中的优化 | 8 Optimization for Training Deep Models | pdf | | 第九章 卷积网络 | 9 Convolutional Networks | pdf | | 第十章 序列建模:循环和递归网络 | 10 Sequence Modeling: Recurrent and Recursive Nets | | | 第十一章 实践方法论 | 11 Practical Methodology | | | 第十二章 应用 | 12 Applications | | | 第十三章 线性因子模型 | 13 Linear Factor Models | | | 第十四章 自编码器 | 14 Autoencoders | | | 第十五章 表示学习 | 15 Representation Learning | | | 第十六章 深度学习中的结构化概率模型 | 16 Structured Probabilistic Models for Deep Learning | | | 第十七章 蒙特卡罗方法 | 17 Monte Carlo Methods | | | 第十八章 直面配分函数 | 18 Confronting the Partition Function | | | 第十九章 近似推断 | 19 Approximate Inference | | | 第二十章 深度生成模型 | 20 Deep Generative Models | |

尚未上传的章节会在后续陆续上传。

成为VIP会员查看完整内容
0
142

机器学习是计算机科学发展最快的领域之一,有着广泛的应用。这本教科书的目的是以一种有原则的方式介绍机器学习和它提供的算法范例。这本书提供了一个基本的理论基础的机器学习和数学推导,将这些原则转化为实际的算法。在介绍了基础知识之后,这本书涵盖了以前教科书没有涉及到的一系列广泛的中心主题。这些包括讨论学习的计算复杂性和凸性和稳定性的概念;重要的算法范例包括随机梯度下降、神经网络和结构化输出学习;以及新兴的理论概念,如PAC-Bayes方法和基于压缩的边界。为高级本科生或刚开始的研究生设计,文本使学生和非专业读者在统计,计算机科学,数学和工程的机器学习的基础和算法。

成为VIP会员查看完整内容
understanding-machine-learning-theory-algorithms.pdf
0
77
Top