在复杂的以人为中心的系统中,每天的决策都具有决策相关信息不完全的特点。现有决策理论的主要问题是,它们没有能力处理概率和事件不精确的情况。在这本书中,我们描述了一个新的理论的决策与不完全的信息。其目的是将决策分析和经济行为的基础从领域二价逻辑转向领域模糊逻辑和Z约束,从行为决策的外部建模转向组合状态的框架。

这本书将有助于在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学的专业人员,学者,经理和研究生。

读者:专业人士,学者,管理者和研究生在模糊逻辑,决策科学,人工智能,数学经济学,和计算经济学。

成为VIP会员查看完整内容
0
40

相关内容

机器学习是计算机科学中增长最快的领域之一,具有深远的应用。本书的目的是介绍机器学习,以及它所提供的算法范例。本书对机器学习的基本原理和将这些原理转化为实际算法的数学推导提供了理论解释。在介绍了基础知识之后,这本书涵盖了以前教科书没有涉及到的一系列广泛的中心主题。这些包括讨论学习的计算复杂性和凸性和稳定性的概念;重要的算法范例包括随机梯度下降、神经网络和结构化输出学习;以及新兴的理论概念,如PAC-Bayes方法和基于压缩的界限。本文面向高级本科生或刚毕业的学生,使统计学、计算机科学、数学和工程学领域的学生和非专业读者都能接触到机器学习的基本原理和算法。

https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

概述

机器学习是指自动检测数据中有意义的模式。在过去的几十年里,它已经成为几乎所有需要从大数据集中提取信息的任务的通用工具。我们被一种基于机器学习的技术包围着:搜索引擎学习如何给我们带来最好的结果(同时投放有利可图的广告),反垃圾邮件软件学习如何过滤我们的电子邮件信息,信用卡交易被一种学习如何侦测欺诈的软件保护着。数码相机学会识别人脸,智能手机上的智能个人辅助应用学会识别语音指令。汽车配备了使用机器学习算法构建的事故预防系统。机器学习还广泛应用于生物信息学、医学和天文学等科学领域。

所有这些应用程序的一个共同特征是,与计算机的更传统使用相比,在这些情况下,由于需要检测的模式的复杂性,人类程序员无法提供关于这些任务应该如何执行的明确、详细的规范。以智慧生物为例,我们的许多技能都是通过学习我们的经验(而不是遵循给我们的明确指示)而获得或改进的。机器学习工具关注的是赋予程序“学习”和适应的能力。

这本书的第一个目标是提供一个严格的,但易于遵循,介绍机器学习的主要概念: 什么是机器学习?

本书的第二个目标是介绍几种关键的机器学习算法。我们选择展示的算法一方面在实践中得到了成功应用,另一方面提供了广泛的不同的学习技术。此外,我们特别关注适合大规模学习的算法(又称“大数据”),因为近年来,我们的世界变得越来越“数字化”,可用于学习的数据量也在急剧增加。因此,在许多应用中数据量大,计算时间是主要瓶颈。因此,我们明确地量化了学习给定概念所需的数据量和计算时间。

目录:

  • Introduction

Part I: Foundations

  • A gentle start
  • A formal learning model
  • Learning via uniform convergence
  • The bias-complexity trade-off
  • The VC-dimension
  • Non-uniform learnability
  • The runtime of learning

Part II: From Theory to Algorithms

  • Linear predictors
  • Boosting
  • Model selection and validation
  • Convex learning problems
  • Regularization and stability
  • Stochastic gradient descent
  • Support vector machines
  • Kernel methods
  • Multiclass, ranking, and complex prediction problems
  • Decision trees
  • Nearest neighbor
  • Neural networks

Part III: Additional Learning Models

  • Online learning
  • Clustering
  • Dimensionality reduction
  • Generative models
  • Feature selection and generation

Part IV: Advanced Theory

  • Rademacher complexities
  • Covering numbers
  • Proof of the fundamental theorem of learning theory
  • Multiclass learnability
  • Compression bounds
  • PAC-Bayes

Appendices

  • Technical lemmas
  • Measure concentration
  • Linear algebra
成为VIP会员查看完整内容
0
75

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
45

题目: Decision-theoretic foundations for statistical causality

摘要:

我们为企业决策理论的统计因果关系(DT)建立了一个数学和解释基础,这是一种直接表达和解决因果问题的方法。DT将因果推理重新定义为“辅助决策”,目的是了解何时以及如何利用外部数据(通常是观察性的)来帮助解决决策问题,利用数据与我的问题之间假定的关系。

因果问题的任何表述中所包含的关系都需要更深层次的证明,这必然取决于上下文。在这里,我们澄清了支持DT方法应用所需要考虑的事项。互换性考虑被用来构建所需的关系,而意图治疗和干预治疗之间的区别形成了“可忽略性”启用条件的基础。我们还展示了DT的观点是如何统一和阐明统计因果关系的其他流行形式的,包括潜在的响应和有向无环图。

成为VIP会员查看完整内容
0
14

高斯过程(GPs)为核机器的学习提供了一种有原则的、实用的、概率的方法。在过去的十年中,GPs在机器学习社区中得到了越来越多的关注,这本书提供了GPs在机器学习中理论和实践方面长期需要的系统和统一的处理。该书是全面和独立的,针对研究人员和学生在机器学习和应用统计学。

这本书处理监督学习问题的回归和分类,并包括详细的算法。提出了各种协方差(核)函数,并讨论了它们的性质。从贝叶斯和经典的角度讨论了模型选择。讨论了许多与其他著名技术的联系,包括支持向量机、神经网络、正则化网络、相关向量机等。讨论了包括学习曲线和PAC-Bayesian框架在内的理论问题,并讨论了几种用于大数据集学习的近似方法。这本书包含说明性的例子和练习,和代码和数据集在网上是可得到的。附录提供了数学背景和高斯马尔可夫过程的讨论。

成为VIP会员查看完整内容
0
32

这本全面的教科书向读者介绍了博弈论的主要思想和应用,以一种结合了严谨性和可达性的风格。Steven Tadelis从对理性决策的简明描述开始,接着讨论了具有完全信息的策略性和广泛的形式博弈、贝叶斯博弈和具有不完全信息的广泛的形式博弈。他涵盖了一系列的主题,包括多阶段重复博弈、讨价还价理论、拍卖、寻租博弈、机制设计、信号博弈、信誉构建和信息传递博弈。与其他博弈论书籍不同,这本书从理性的概念开始,通过诸如主导策略和理性化等概念,探讨其对多人决策问题的影响。只有这样,它才提出了纳什均衡及其导数的问题。

《博弈论》是高等本科和研究生的理想教材。在整个过程中,概念和方法是解释使用真实世界的例子支持精确的分析材料。这本书有许多重要的应用经济学和政治学,以及大量的练习,集中在如何正式的非正式情况,然后分析他们。

介绍博弈论的核心思想和应用 包含静态和动态博弈,包含完整和不完整的信息 提供各种各样的例子、应用程序和练习 主题包括重复博弈、讨价还价、拍卖、信号、声誉和信息传输 适合本科及研究生 为教师提供完整的解决方案,为学生提供精选的解决方案

成为VIP会员查看完整内容
0
81

概率图模型是机器学习中的一种技术,它使用图论的概念来简明地表示和最佳地预测数据问题中的值。

图模型为我们提供了在数据中发现复杂模式的技术,广泛应用于语音识别、信息提取、图像分割和基因调控网络建模等领域。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一整章是关于朴素贝叶斯模型和隐马尔可夫模型的。这些模型已经通过实际例子进行了详细的讨论。

你会学到什么

  • 掌握概率论和图论的基本知识
  • 使用马尔可夫网络
  • 实现贝叶斯网络
  • 图模型中的精确推理技术,如变量消除算法
  • 了解图模型中的近似推理技术,如消息传递算法

图模型中的示例算法 通过真实的例子来掌握朴素贝叶斯的细节 使用Python中的各种库部署PGMs 获得隐马尔可夫模型的工作细节与现实世界的例子

详细 概率图模型是机器学习中的一种技术,它使用图论的概念来简洁地表示和最佳地预测数据问题中的值。在现实问题中,往往很难选择合适的图模型和合适的推理算法,这对计算时间和精度有很大的影响。因此,了解这些算法的工作细节是至关重要的。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一个完整的章节专门讨论最广泛使用的网络朴素贝叶斯模型和隐马尔可夫模型(HMMs)。这些模型已经通过实际例子进行了详细的讨论。

风格和方法 一个易于遵循的指南,帮助您理解概率图模型使用简单的例子和大量的代码例子,重点放在更广泛使用的模型。

成为VIP会员查看完整内容
0
61

简介: 这本书需要数学思维,但只需要基本的背景知识。 在本书的大部分内容中,我们都假设您具备基本的计算机科学知识(算法,复杂性)和基本的概率论。 在更多的技术部分中,我们假设您熟悉Markov决策问题(MDP),数学编程(特别是线性和整数编程)和经典逻辑。

所有这些(基本计算机科学除外)都在附录中进行了简要介绍,但是它们只是作为更新和建立符号的用途,不能替代这些主题的背景知识。 (尤其是概率论,这是正确的。)但是,最重要的是,先决条件是具有清晰思考的能力。

本书包括13个章节,大致分为以下几部分:

Block 1, Chapters 1–2:分布式问题解决

Block 2, Chapters 3–6:非合作博弈论

Block 3, Chapters 7:learning

Block 4, Chapters 8:交流

Block 5, Chapters 9–11:组协议

Block 6, Chapters 12:联盟博弈论

Block 7, Chapters 13–14:逻辑理论

部分目录:

成为VIP会员查看完整内容
0
77

前言: 目标:本课程旨在让学生对人工智能的基本概念和实践有一个坚实的(通常是有点理论性的)基础。这门课程在第一学期主要涉及符号化的人工智能,有时也被称为优秀的老式人工智能(GofAI),并在第二学期提供统计方法的基础。事实上,一个完整的基于机器学习的AI应该有专业课程,并且需要比我们在这门课程中更多的数学基础。

课程内容

目标: 使学生对人工智能领域的基本概念和实践有一个坚实的基础。该课程将基于Russell/Norvig的书《人工智能》:现代方法[RN09]

Artificial Intelligence I(第一部分): 介绍人工智能作为一个研究领域,讨论作为人工智能统一概念范式的理性代理,并涵盖问题解决、搜索、约束传播、逻辑、知识表示和规划。

Artificial Intelligence II(第二部分): 更倾向于让学生接触基于统计的人工智能的基础知识:我们从不确定性下的推理开始,用贝叶斯网络建立基础,并将其扩展到理性决策理论。在此基础上,我们介绍了机器学习的基础知识。

成为VIP会员查看完整内容
0
64
Top