学习使用技术进行数据科学并在实践中利用物联网(IoT)。这本书介绍了现代数据科学的核心概念。您将从可以在BBC micro:bit上进行的简单应用程序开始,然后使用其他硬件进行更复杂的实验。

在教育领域,数据科学是最令人兴奋和增长最快的主题之一。理解数据是如何工作的,以及如何使用数据,是21世纪的一项关键生活技能。在一个由信息驱动的世界里,学生们必须配备他们需要的工具来理解这一切。例如,考虑一下数据科学是如何成为识别气候变化危险的关键因素,并继续帮助我们识别和应对它带来的威胁。这本书探讨了数据的威力,以及如何使用手边的硬件来应用数据。

您将学习数据科学的核心概念,如何在现实世界中应用它们,以及如何利用物联网的巨大潜力。到最后,你将能够执行复杂而有意义的数据科学实验——为什么不成为一名公民科学家,为对抗气候变化做出真正的贡献呢?

你将学习

  • 使用带有微处理器的传感器来收集或“创建”数据
  • 从微处理器中提取、制表和利用数据
  • 将微处理器连接到物联网平台,共享并使用我们收集的数据
  • 分析数据并将其转化为信息

成为VIP会员查看完整内容
0
33

相关内容

人工智能(Artificial Intelligence, AI )是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支。

如果您是用Python编程的新手,并且正在寻找可靠的介绍,那么这本书就是为您准备的。由计算机科学教师开发,在“为绝对初学者”系列丛书通过简单的游戏创造教授编程的原则。您将获得实际的Python编程应用程序所需的技能,并将了解如何在真实场景中使用这些技能。在整个章节中,你会发现一些代码示例来说明所提出的概念。在每一章的结尾,你会发现一个完整的游戏,展示了这一章的关键思想,一章的总结,以及一系列的挑战来测试你的新知识。当你读完这本书的时候,你将非常精通Python,并且能够将你所学到的基本编程原理应用到你要处理的下一种编程语言。

成为VIP会员查看完整内容
0
125

探索多年来用户研究如何受到一系列学科的影响,如人机交互、可用性、人类学、认知心理学、人体工程学等。本书旨在为用户研究社区做出贡献,涵盖的主题将帮助用户体验专业人士、学生和利益相关者更好地理解什么是用户研究。

通过这本书,你将获得一套实用的技能,范围从如何进行研究,以建立一个案例,以获得所需的预算和资源。它将为你提供一个如何组织你的研究,如何计划它,以及如何在整个项目中管理利益相关者的期望的清晰的说明。您将看到如何将用户研究融入到您的组织中,并在不同的产品开发阶段(发现、Alpha、Beta直到上线)将其结合起来,以及如何发展一个用户研究团队。

《实用用户研究》回顾了用于用户研究的方法论,着眼于如何招募参与者,如何收集和分析数据,最后关注如何解释和展示你的发现。跨文化研究、可及性和辅助数字研究也将在本书中讨论。最后一章给你10个项目概要,你将能够应用你的新技能集,并将你所学到的付诸实践。

你将学习:

  • 将用户研究整合到你的业务中
  • 将用户研究应用到产品开发周期中
  • 审查进行用户研究所需的适当程序
  • 用一种实用的方法进行用户研究

这本书是给谁的:

  • 任何想了解更多用户研究的人。
成为VIP会员查看完整内容
0
50

使用Microsoft Excel中流行的数据挖掘技术,更好地理解机器学习方法。

软件工具和编程语言包接受数据输入并直接交付数据挖掘结果,对工作机制没有任何见解,并在输入和输出之间造成了鸿沟。这就是Excel可以提供帮助的地方。

Excel允许您以透明的方式处理数据。当您打开一个Excel文件时,数据立即可见,您可以直接使用它。在执行挖掘任务时,可以检查中间结果,从而更深入地理解如何操作数据和获得结果。这些是隐藏在软件工具和编程语言包中的模型构建过程的关键方面。

这本书教你通过Excel进行数据挖掘。您将了解当数据集不是很大时Excel在数据挖掘方面的优势。它可以为您提供数据挖掘的可视化表示,在结果中建立信心。您将手动完成每一个步骤,这不仅提供了一个主动学习体验,而且还告诉您挖掘过程是如何工作的,以及如何发现数据内部隐藏的模式。

你将学到什么

  • 使用可视化的一步一步的方法理解数据挖掘
  • 首先从理论上介绍了一种数据挖掘方法,然后是Excel的实现
  • 揭开机器学习算法背后的神秘面纱,让每个人都能接触到一个复杂的话题
  • 熟练使用Excel公式和函数
  • 获得数据挖掘和Excel的实际操作经验

这本书是给谁的

  • 任何对学习数据挖掘或机器学习感兴趣的人,特别是数据科学视觉学习者和擅长Excel的人,希望探索数据科学主题和/或扩展他们的Excel技能的人。建议对Excel有基本或初级的了解。
成为VIP会员查看完整内容
0
61

【导读】来自苏黎世联邦理工学院的Afonso S. Bandeira教授撰写了《数据科学数学基础》新书书稿,共170页pdf。现今在许多科学领域的实验、观察和数值模拟产生了大量的数据。这种快速增长预示着“以数据为中心的科学”时代的到来,这需要新的范式来处理如何获取、处理、分布和分析数据。与此同时,人工智能的发展将给技术、科学和工业的许多领域带来革命。本课程将涵盖用于开发算法的数学模型和概念,这些算法可以处理数据科学、机器学习和人工智能带来的一些挑战。

成为VIP会员查看完整内容
0
81

关于大数据技术的信息很多,但将这些技术拼接到端到端企业数据平台是一项艰巨的任务,没有得到广泛的讨论。通过这本实用的书,您将学习如何在本地和云中构建大数据基础设施,并成功地构建一个现代数据平台。

本书非常适合企业架构师、IT经理、应用程序架构师和数据工程师,它向您展示了如何克服Hadoop项目期间出现的许多挑战。在深入了解以下内容之前,您将在一个彻底的技术入门中探索Hadoop和大数据领域中可用的大量工具:

  • 基础设施: 查看现代数据平台中的所有组件层,从服务器到数据中心,为企业中的数据建立坚实的基础

-平台: 了解部署、操作、安全性、高可用性和灾难恢复的各个方面,以及将平台与企业IT的其他部分集成在一起所需了解的所有内容

  • 将Hadoop带到云端: 学习在云中运行大数据平台的重要架构方面,同时保持企业安全性和高可用性
成为VIP会员查看完整内容
0
140

机器学习是计算机科学中增长最快的领域之一,具有深远的应用。本书的目的是介绍机器学习,以及它所提供的算法范例。本书对机器学习的基本原理和将这些原理转化为实际算法的数学推导提供了理论解释。在介绍了基础知识之后,这本书涵盖了以前教科书没有涉及到的一系列广泛的中心主题。这些包括讨论学习的计算复杂性和凸性和稳定性的概念;重要的算法范例包括随机梯度下降、神经网络和结构化输出学习;以及新兴的理论概念,如PAC-Bayes方法和基于压缩的界限。本文面向高级本科生或刚毕业的学生,使统计学、计算机科学、数学和工程学领域的学生和非专业读者都能接触到机器学习的基本原理和算法。

https://www.cse.huji.ac.il/~shais/UnderstandingMachineLearning/index.html

概述

机器学习是指自动检测数据中有意义的模式。在过去的几十年里,它已经成为几乎所有需要从大数据集中提取信息的任务的通用工具。我们被一种基于机器学习的技术包围着:搜索引擎学习如何给我们带来最好的结果(同时投放有利可图的广告),反垃圾邮件软件学习如何过滤我们的电子邮件信息,信用卡交易被一种学习如何侦测欺诈的软件保护着。数码相机学会识别人脸,智能手机上的智能个人辅助应用学会识别语音指令。汽车配备了使用机器学习算法构建的事故预防系统。机器学习还广泛应用于生物信息学、医学和天文学等科学领域。

所有这些应用程序的一个共同特征是,与计算机的更传统使用相比,在这些情况下,由于需要检测的模式的复杂性,人类程序员无法提供关于这些任务应该如何执行的明确、详细的规范。以智慧生物为例,我们的许多技能都是通过学习我们的经验(而不是遵循给我们的明确指示)而获得或改进的。机器学习工具关注的是赋予程序“学习”和适应的能力。

这本书的第一个目标是提供一个严格的,但易于遵循,介绍机器学习的主要概念: 什么是机器学习?

本书的第二个目标是介绍几种关键的机器学习算法。我们选择展示的算法一方面在实践中得到了成功应用,另一方面提供了广泛的不同的学习技术。此外,我们特别关注适合大规模学习的算法(又称“大数据”),因为近年来,我们的世界变得越来越“数字化”,可用于学习的数据量也在急剧增加。因此,在许多应用中数据量大,计算时间是主要瓶颈。因此,我们明确地量化了学习给定概念所需的数据量和计算时间。

目录:

  • Introduction

Part I: Foundations

  • A gentle start
  • A formal learning model
  • Learning via uniform convergence
  • The bias-complexity trade-off
  • The VC-dimension
  • Non-uniform learnability
  • The runtime of learning

Part II: From Theory to Algorithms

  • Linear predictors
  • Boosting
  • Model selection and validation
  • Convex learning problems
  • Regularization and stability
  • Stochastic gradient descent
  • Support vector machines
  • Kernel methods
  • Multiclass, ranking, and complex prediction problems
  • Decision trees
  • Nearest neighbor
  • Neural networks

Part III: Additional Learning Models

  • Online learning
  • Clustering
  • Dimensionality reduction
  • Generative models
  • Feature selection and generation

Part IV: Advanced Theory

  • Rademacher complexities
  • Covering numbers
  • Proof of the fundamental theorem of learning theory
  • Multiclass learnability
  • Compression bounds
  • PAC-Bayes

Appendices

  • Technical lemmas
  • Measure concentration
  • Linear algebra
成为VIP会员查看完整内容
0
163

简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。

您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。

  • 学习简单的数据类型,以及基本的数学和文本操作
  • 在Python的内置数据结构中使用数据协商技术
  • 探索Python代码结构,包括函数的使用
  • 用Python编写大型程序,包括模块和包
  • 深入研究对象、类和其他面向对象的特性
  • 检查从平面文件到关系数据库和NoSQL的存储
  • 使用Python构建web客户机、服务器、api和服务
  • 管理系统任务,如程序、进程和线程
  • 了解并发性和网络编程的基础知识

成为VIP会员查看完整内容
0
143

本书主要内容包括:数据清洗在数据科学领域中的重要作用,文件格式、数据类型、字符编码的基本概念,组织和处理数据的电子表格与文本编辑器,各种格式数据的转换方法,解析和清洗网页上的HTML 文件的三种策略,提取和清洗PDF 文件中数据的方法,检测和清除RDBMS 中的坏数据的解决方案,以及使用书中介绍的方法清洗来自Twitter 和Stack Overflow 的数据。

本书适合任何水平的数据科学家以及对数据清理感兴趣的读者阅读。

数据清洗是数据挖掘与分析过程中不可缺少的一个环节,但因为数据类型极其复杂,传统的清洗脏数据工作单调乏味且异常辛苦。如果能利用正确的工具和方法,就可以让数据清洗工作事半功倍。

本书从文件格式、数据类型、字符编码等基本概念讲起,通过真实的示例,探讨如何提取和清洗关系型数据库、网页文件和PDF文档中的数据。最后提供了两个真实的项目,让读者将所有数据清洗技术付诸实践,完成整个数据科学过程。

如果你是一位数据科学家,或者从事数据科学工作,哪怕是位新手,只要对数据清洗有兴趣,那么本书就适合你阅读!

  • 理解数据清洗在整个数据科学过程中的作用
  • 掌握数据清洗的基础知识,包括文件清洗、数据类型、字符编码等
  • 发掘电子表格和文本编辑器中与数据组织和操作相关的重要功能
  • 学会常见数据格式的相互转换,如JSON、CSV和一些特殊用途的格式
  • 采用三种策略来解析和清洗HTML文件中的数据
  • 揭开PDF文档的秘密,提取需要的数据
  • 借助一系列解决方案来清洗存放在关系型数据库里的坏数据
  • 创建自己的干净数据集,为其打包、添加授权许可并与他人共享
  • 使用书中的工具以及Twitter和Stack Overflow数据,完成两个真实的项目
成为VIP会员查看完整内容
0
104

这本书向你展示了如何建立实时图像处理系统,一直到家庭自动化。了解如何开发一个基于32位ARM处理器的系统,通过语音命令实现完全控制

实时图像处理系统被广泛应用于各种应用中,如交通监控系统、医学图像处理和生物特征安全系统。在使用深度神经网络的实时物联网成像中,您将学习如何使用Java和OpenCV的包装器来利用最佳的DNN模型来检测图像中的对象。在为远程编程准备Visual Studio代码时,仔细看看Java脚本是如何在Raspberry Pi上工作的。您还将获得有关图像和视频脚本的见解。作者Nicolas Modrzyk向您展示了如何使用Rhasspy语音平台来添加一个强大的语音助手,并从您的计算机上完全运行和控制您的Raspberry Pi。

为了让您的语音意图为家庭自动化做好准备,您将探索Java如何连接到MQTT并处理参数化的Rhasspy语音命令。有了语音控制系统,您就可以在选定的环境中执行简单的任务,比如检测猫、人和咖啡壶。隐私和自由是至关重要的,因此优先考虑使用开源软件和设备上的语音环境,在这种环境中,您可以完全控制您的数据和视频流。你的语音指令是你自己的,而且只是你自己的。

随着物联网和机器学习的发展,前沿的图像处理系统提供了完整的过程自动化。这本实用的书教你建立这样一个系统,给你完全的控制与最小的努力。

你会学到什么:

  • 通过创建OpenCV过滤器显示掌握
  • 执行YOLO DNN模型进行图像检测
  • 在Raspberry Pi 4上应用最好的Java脚本
  • 为实时远程编程准备设置
  • 使用Rhasspy语音平台来处理语音命令和增强您的家庭自动化设置

这本书是写给谁的: 工程师和爱好者希望使用他们喜欢的JVM在Raspberry Pi上运行对象检测和网络

成为VIP会员查看完整内容
0
47

简介: 深度学习无处不在。例如,当在线使用许多应用程序甚至在购物时,都会看到它。我们被深度学习所包围,甚至根本没有意识到这一点,这使学习深度学习变得至关重要,因为可以利用它做很多事情,这远远超出了您的想象。当您学习本书时,您可以在Mac,Linux或Windows系统上运行的许多示例代码。您也可以使用Google Colab之类的工具在线运行代码。 本书的第一部分为您提供了一些入门信息,除了安装一些必备软件,还会了解一些基本数学知识。

目录:

  • 说明

  • Chapter 1:深度学习介绍

    • 深度学习的意义
    • 真实世界中的深度学习
    • 深度学习项目的环境
  • Chapter 2:机器学习介绍

    • 机器学习定义
    • 思考学习的不同方法
    • 机器学习的正确使用
  • Chapter 3:使用python

    • anaconda
    • 下载数据集与代码
    • 创建应用
    • 云端使用
  • chapter 4:利用深度学习看框架

    • 框架介绍
    • 了解tensorflow
  • chapter 5:回顾数学与优化

    • 矩阵介绍
    • 理解向量,scalar等
    • 优化介绍
  • chapter 6:线性回归基础

    • 组合变量
    • 混合变量类型
    • 概率
    • 特征介绍
  • chapter 7:神经网络

    • 感知机
    • 神经网络复杂度
    • 过拟合
  • Chapter 8:构建基础神经网络

    • 理解神经网络
    • 神经网络的核心
  • Chapter 9:深度学习

    • 数据
    • 提升速度
    • 解释深度学习的不同
  • Chapter 10:解释卷积神经网络

  • Chapter 11:循环神经网络

  • Chapter 12:图片分类

  • Chapter 13:循环神经网络

  • Chapter 14:语言处理

  • Chapter 15:生成音乐和虚拟艺术

  • Chapter 16:生成对抗网络

  • Chapter 17:深度强化学习

  • Chapter 18:深度学习的应用

  • Chapter 19:十个必备的深度学习工具

  • Chapter 20:十个使用深度学习的场景

成为VIP会员查看完整内容
0
133
小贴士
相关VIP内容
专知会员服务
125+阅读 · 2020年8月14日
专知会员服务
50+阅读 · 2020年7月21日
专知会员服务
61+阅读 · 2020年6月28日
专知会员服务
140+阅读 · 2020年6月15日
专知会员服务
143+阅读 · 2020年5月17日
专知会员服务
104+阅读 · 2020年5月14日
深度神经网络实时物联网图像处理,241页pdf
专知会员服务
47+阅读 · 2020年3月15日
【新书】傻瓜式入门深度学习,371页pdf
专知会员服务
133+阅读 · 2019年12月28日
相关资讯
Gartner:2020年十大战略性技术趋势, 47页pdf
专知
22+阅读 · 2020年3月10日
【机器学习】无处不在的机器学习
产业智能官
3+阅读 · 2019年8月18日
免费教材-《数据科学基础-2018》最新版下载
深度学习与NLP
29+阅读 · 2018年12月28日
【物联网】物联网产业现状与技术发展
产业智能官
8+阅读 · 2018年12月17日
为什么 Python 更适合做 AI/机器学习?
计算机与网络安全
10+阅读 · 2018年3月18日
五位专家跟你讲讲为啥Python更适合做AI/机器学习
全球人工智能
3+阅读 · 2018年3月18日
为你推荐一份深度学习书单,来学习吧~
THU数据派
12+阅读 · 2018年3月13日
相关论文
Yikai Yan,Chaoyue Niu,Yucheng Ding,Zhenzhe Zheng,Fan Wu,Guihai Chen,Shaojie Tang,Zhihua Wu
9+阅读 · 2020年2月18日
Heterogeneous Deep Graph Infomax
Yuxiang Ren,Bo Liu,Chao Huang,Peng Dai,Liefeng Bo,Jiawei Zhang
10+阅读 · 2019年11月19日
Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs
Osman Asif Malik,Shashanka Ubaru,Lior Horesh,Misha E. Kilmer,Haim Avron
6+阅读 · 2019年10月16日
Graph Analysis and Graph Pooling in the Spatial Domain
Mostafa Rahmani,Ping Li
4+阅读 · 2019年10月3日
Wenqi Fan,Yao Ma,Qing Li,Yuan He,Eric Zhao,Jiliang Tang,Dawei Yin
7+阅读 · 2019年2月19日
Accelerated Methods for Deep Reinforcement Learning
Adam Stooke,Pieter Abbeel
5+阅读 · 2019年1月10日
Federated Learning for Mobile Keyboard Prediction
Andrew Hard,Kanishka Rao,Rajiv Mathews,Françoise Beaufays,Sean Augenstein,Hubert Eichner,Chloé Kiddon,Daniel Ramage
3+阅读 · 2018年11月8日
Towards Scalable Spectral Clustering via Spectrum-Preserving Sparsification
Yongyu Wang,Zhuo Feng
4+阅读 · 2018年10月11日
Elias Pimenidis,Nikolaos Polatidis,Haralambos Mouratidis
7+阅读 · 2018年5月6日
Mohammad Hossain Namaki,F A Rezaur Rahman Chowdhury,Md Rakibul Islam,Janardhan Rao Doppa,Yinghui Wu
6+阅读 · 2018年1月21日
Top