关于大数据技术的信息很多,但将这些技术拼接到端到端企业数据平台是一项艰巨的任务,没有得到广泛的讨论。通过这本实用的书,您将学习如何在本地和云中构建大数据基础设施,并成功地构建一个现代数据平台。

本书非常适合企业架构师、IT经理、应用程序架构师和数据工程师,它向您展示了如何克服Hadoop项目期间出现的许多挑战。在深入了解以下内容之前,您将在一个彻底的技术入门中探索Hadoop和大数据领域中可用的大量工具:

  • 基础设施: 查看现代数据平台中的所有组件层,从服务器到数据中心,为企业中的数据建立坚实的基础

-平台: 了解部署、操作、安全性、高可用性和灾难恢复的各个方面,以及将平台与企业IT的其他部分集成在一起所需了解的所有内容

  • 将Hadoop带到云端: 学习在云中运行大数据平台的重要架构方面,同时保持企业安全性和高可用性
成为VIP会员查看完整内容
0
80

相关内容

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
52

这本书以一种结构化的、直观的、友好的方式学习c++编程语言。这本书教授现代c++编程语言、c++标准库和现代c++标准的基础知识。不需要以前的编程经验。

c++是一种不同于其他语言的语言,它的复杂性令人惊讶,但在许多方面都非常优美和优雅。它也是一种不能通过猜测来学习的语言,是一种很容易出错的语言。为了克服这一点,每个部分都充满了现实世界中逐渐增加复杂性的例子。面向绝对初学者的现代c++教的不仅仅是用c++ 20编程。它提供了一个可在其上进行构建的坚实的c++基础。

作者带您了解c++编程语言、标准库和c++ 11到c++ 20标准基础知识。每一章都附有适量的理论和大量的源代码示例。

您将使用c++ 20个特性和标准,同时还将比较和查看以前的c++版本。您将使用大量相关的源代码示例来实现此目的。

你将学到什么

  • 使用c++的基础:类型、操作符、变量、常量、表达式、引用、函数、类、I/O、智能指针、多态性等等
  • 在Windows上设置Visual Studio环境,在Linux上设置GCC环境,这样就可以编写自己的代码
  • 声明和定义函数、类和对象,并将代码组织到名称空间中
  • 发现面向对象编程:类和对象,封装,继承,多态性,以及更多使用最先进的c++特性
  • 在组织源代码和控制程序工作流方面采用最佳实践
  • 熟悉c++语言的dos和donts等等
  • 掌握基本的lambdas、继承、多态性、智能指针、模板、模块、契约、概念等等

这本书是给谁的

  • 希望学习c++编程的初学者或程序员新手。不需要有编程经验。
成为VIP会员查看完整内容
0
63

对于语音计算领域的开发者来说,这是一个激动人心的时刻:谷歌上每4次搜索中就有1次是支持语音的,亚马逊Alexa刚刚超过1万个技能,WhatsApp上每天完成1亿个通话。但是你从哪里开始学习如何在这个领域编码呢?

无论您是一位经验丰富的开发人员还是刚刚起步,这本书都将指导您使用Python构建基于语音的应用程序。

  • 了解如何读/写、记录、清洁、加密、回放、转码、转录、压缩、发布、饱和化、建模和可视化语音文件
  • 从零开始创建自己的语音计算机和语音助手
  • 在Docker和Kubernetes上设计前沿的微服务服务器架构
  • 在GitHub存储库中访问200多个初始脚本
  • 参与到更大的开源语音社区中
成为VIP会员查看完整内容
0
35

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
73

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
83

Manning最畅销的Java 8书籍已经被修订为Java 9和Java 10!在Modern Java In Action中,读者可以使用最新的特性和技术,在已有的Java语言技能的基础上进行构建。

Java 9的发布建立在Java 8令人激动的基础之上。除了Java 8的lambdas和streams之外,Java 9还添加了许多自己的新特性。它包含了新的库特性来支持响应式编程,这为用户提供了一种新的方式来思考编程和编写更易于阅读和维护的代码。

成为VIP会员查看完整内容
0
36

简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。

您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。

  • 学习简单的数据类型,以及基本的数学和文本操作
  • 在Python的内置数据结构中使用数据协商技术
  • 探索Python代码结构,包括函数的使用
  • 用Python编写大型程序,包括模块和包
  • 深入研究对象、类和其他面向对象的特性
  • 检查从平面文件到关系数据库和NoSQL的存储
  • 使用Python构建web客户机、服务器、api和服务
  • 管理系统任务,如程序、进程和线程
  • 了解并发性和网络编程的基础知识

成为VIP会员查看完整内容
0
86

在线推荐系统帮助用户找到电影、工作、餐馆——甚至爱情!这是一种将统计数据、人口统计数据和查询条件相结合以获得令他们满意的结果的艺术。学习建立一个推荐系统的正确方法:它可以使你的应用成功或失败!

对这项技术

推荐系统无处不在,帮助你找到从电影到工作,从餐馆到医院,甚至是爱情的一切。利用行为和人口统计数据,这些系统可以预测用户在特定时间最感兴趣的内容,从而得到高质量、有序、个性化的建议。推荐系统实际上是保持网站内容最新、有用和有趣的必要手段。

关于这本书

实用推荐系统解释如何推荐系统的工作,并显示如何创建和应用它们为您的网站。在介绍了基础知识之后,您将看到如何收集用户数据并生成个性化的推荐。您将学习如何使用最流行的推荐算法,并在Amazon和Netflix等网站上看到它们的实例。最后,这本书涵盖了规模问题和其他问题,你会遇到的网站成长。

里面有什么

  • 如何收集和理解用户行为
  • 协同和基于内容的过滤
  • 机器学习算法
  • Python中的实际示例
成为VIP会员查看完整内容
0
88

本书概述了现代数据科学重要的数学和数值基础。特别是,它涵盖了信号和图像处理(傅立叶、小波及其在去噪和压缩方面的应用)、成像科学(反问题、稀疏性、压缩感知)和机器学习(线性回归、逻辑分类、深度学习)的基础知识。重点是对方法学工具(特别是线性算子、非线性逼近、凸优化、最优传输)的数学上合理的阐述,以及如何将它们映射到高效的计算算法。

https://mathematical-tours.github.io/book/

它应该作为数据科学的数字导览的数学伴侣,它展示了Matlab/Python/Julia/R对这里所涵盖的所有概念的详细实现。

成为VIP会员查看完整内容
0
172

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
148
小贴士
相关VIP内容
专知会员服务
52+阅读 · 7月29日
专知会员服务
63+阅读 · 7月24日
专知会员服务
35+阅读 · 7月12日
专知会员服务
36+阅读 · 5月22日
专知会员服务
86+阅读 · 5月17日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
148+阅读 · 3月17日
相关论文
Sequential Scenario-Specific Meta Learner for Online Recommendation
Zhengxiao Du,Xiaowei Wang,Hongxia Yang,Jingren Zhou,Jie Tang
12+阅读 · 2019年6月2日
Wen Zhang,Bibek Paudel,Liang Wang,Jiaoyan Chen,Hai Zhu,Wei Zhang,Abraham Bernstein,Huajun Chen
4+阅读 · 2019年3月21日
Contextualized Non-local Neural Networks for Sequence Learning
Pengfei Liu,Shuaichen Chang,Xuanjing Huang,Jian Tang,Jackie Chi Kit Cheung
3+阅读 · 2018年11月21日
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu,Dushyant Rao,Jakub Sygnowski,Oriol Vinyals,Razvan Pascanu,Simon Osindero,Raia Hadsell
6+阅读 · 2018年7月16日
Wei Zhao,Benyou Wang,Jianbo Ye,Min Yang,Zhou Zhao,Xiaojun Chen
8+阅读 · 2018年5月2日
Tran Dang Quang Vinh,Tuan-Anh Nguyen Pham,Gao Cong,Xiao-Li Li
9+阅读 · 2018年4月18日
Jeremy Howard,Sebastian Ruder
4+阅读 · 2018年1月18日
Nicholas Carlini,David Wagner
10+阅读 · 2018年1月5日
Alessandro Bay,Biswa Sengupta
7+阅读 · 2018年1月5日
Top