深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学习样本数据的特征表示,卷积神经网络已经广泛应用于图像分类、目标检测、语义分割以及自然语言处理等领域。首先分析了典型卷积神经网络模型为提高其性能增加网络深度以及宽度的模型结构,分析了采用注意力机制进一步提升模型性能的网络结构,然后归纳分析了目前的特殊模型结构,最后总结并讨论了卷积神经网络在相关领域的应用,并对未来的研究方向进行展望。

地址: http://fcst.ceaj.org/CN/abstract/abstract2521.shtml

成为VIP会员查看完整内容
0
48

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

摘要:随着深度学习技术的快速发展,许多研究者尝试利用深度学习来解决文本分类问题,特别是在卷积神经网络和循环神经网络方面,出现了许多新颖且有效的分类方法。对基于深度神经网络的文本分类问题进行分析,介绍卷积神经网络、循环神经网络、注意力机制等方法在文本分类中的应用和发展,分析多种典型分类方法的特点和性能,从准确率和运行时间方面对基础网络结构进行比较,表明深度神经网络较传统机器学习方法在用于文本分类时更具优势,其中卷积神经网络具有优秀的分类性能和泛化能力。在此基础上,指出当前深度文本分类模型存在的不足,并对未来的研究方向进行展望。

http://www.ecice06.com/article/2021/1000-3428/2121.htm

文本分类技术经历了从专家系统到机器学习再到深度学习的发展过程。在20世纪80年代以前,基于规则系统的文本分类方法需要领域专家定义一系列分类规则,通过规则匹配判断文本类别。基于规则的分类方法容易理解,但该方法依赖专家知识,系统构建成本高且可移植性差。20世纪90年代,机器学习技术逐渐走向成熟,出现了许多经典的文本分类算法,如决策树[1]、朴素贝叶斯[2]、支持向量机[3]、最大熵[4]、最近邻[5]等,这些方法部分克服了上述缺点,一定程度上实现了分类器的自动生成,被广泛应用于各个领域。然而,机器学习方法在构建分类器之前通常需要繁杂的人工特征工程,这限制了其进一步发展。

2012年之后,深度学习算法引起了研究者的广泛关注。深度学习为机器学习建模提供了一种直接端到端的解决方案,可避免复杂的特征工程。GolVe[6]和word2vec[7]等词向量模型的提出,使深度学习算法成功地应用到文本处理领域,随后出现了各种基于深度神经网络(Deep Neural Network,DNN)的文本分类方法。这些方法主要采用卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)和注意力机制等深度学习技术,并且取得了比传统方法更为出色的性能。近年来,图卷积网络(Graph Convolutional Network,GCN)、区域嵌入和元学习等一些新的深度学习方法也被应用于文本分类领域。

本文对基于深度神经网络的文本分类技术进行介绍和分析,阐述卷积神经网络、循环神经网络和注意力机制等方法在文本分类中的应用和发展情况,总结各类方法的特点及区别,并对不同方法的性能表现和适用场景进行比较,讨论在应用深度学习方法处理文本分类任务时应当注意的问题。在此基础上,指出针对该技术未来的研究方向。

成为VIP会员查看完整内容
0
27

近年来,自然语言处理的研究方法取得了一些突破。这些突破来源于两个新的建模框架以及在计算和词汇资源的可用性的改进。在这个研讨会小册子中,我们将回顾这些框架,以一种可以被视为现代自然语言处理开端的方法论开始:词嵌入。我们将进一步讨论将嵌入式集成到端到端可训练方法中,即卷积神经网络和递归神经网络。这本小册子的第二章将讨论基于注意力的模型的影响,因为它们是最近大多数最先进的架构的基础。因此,我们也将在本章中花很大一部分时间讨论迁移学习方法在现代自然语言处理中的应用。最后一章将会是一个关于自然语言生成的说明性用例,用于评估最先进的模型的训练前资源和基准任务/数据集。

https://compstat-lmu.github.io/seminar_nlp_ss20/

在过去的几十年里,人工智能技术的重要性和应用不断得到关注。在当今时代,它已经与构成人类塑造环境的大部分环境密不可分。因此,商业、研究和开发、信息服务、工程、社会服务和医学等无数部门已经不可逆转地受到人工智能能力的影响。人工智能有三个主要领域组成了这项技术:语音识别、计算机视觉和自然语言处理(见Yeung (2020))。在这本书中,我们将仔细研究自然语言处理(NLP)的现代方法。

这本小册子详细介绍了用于自然语言处理的现代方法,如深度学习和迁移学习。此外,本研究亦会研究可用于训练自然语言处理任务的资源,并会展示一个将自然语言处理应用于自然语言生成的用例。

为了分析和理解人类语言,自然语言处理程序需要从单词和句子中提取信息。由于神经网络和其他机器学习算法需要数字输入来进行训练,因此应用了使用密集向量表示单词的词嵌入。这些通常是通过有多个隐藏层的神经网络学习的,深度神经网络。为了解决容易的任务,可以应用简单的结构神经网络。为了克服这些简单结构的局限性,采用了递归和卷积神经网络。因此,递归神经网络用于学习不需要预先定义最佳固定维数的序列的模型,卷积神经网络用于句子分类。第二章简要介绍了NLP中的深度学习。第三章将介绍现代自然语言处理的基础和应用。在第四章和第五章中,将解释和讨论递归神经网络和卷积神经网络及其在自然语言处理中的应用。

迁移学习是每个任务或领域的学习模型的替代选择。在这里,可以使用相关任务或领域的现有标记数据来训练模型,并将其应用到感兴趣的任务或领域。这种方法的优点是不需要在目标域中进行长时间的训练,并且可以节省训练模型的时间,同时仍然可以(在很大程度上)获得更好的性能。迁移学习中使用的一个概念是注意力,它使解码器能够注意到整个输入序列,或自注意,它允许一个Transformer 模型处理所有输入单词,并建模一个句子中所有单词之间的关系,这使得快速建模一个句子中的长期依赖性成为可能。迁移学习的概念将在小册子的第6章简要介绍。第七章将通过ELMo、ULMFiT和GPT模型来描述迁移学习和LSTMs。第八章将详细阐述注意力和自注意力的概念。第九章将迁移学习与自注意力相结合,介绍了BERT模型、GTP2模型和XLNet模型。

为NLP建模,需要资源。为了找到任务的最佳模型,可以使用基准测试。为了在基准实验中比较不同的模型,需要诸如精确匹配、Fscore、困惑度或双语评估替补学习或准确性等指标。小册子的第十章简要介绍了自然语言处理的资源及其使用方法。第11章将解释不同的指标,深入了解基准数据集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到资源的预训练模型和数据库,如“带代码的论文”和“大坏的NLP数据库”。

在小册子的最后一章中,介绍了生成性NLP处理自然语言生成,从而在人类语言中生成可理解的文本。因此,不同的算法将被描述,聊天机器人和图像字幕将被展示,以说明应用的可能性。

本文对自然语言处理中各种方法的介绍是接下来讨论的基础。小册子的各个章节将介绍现代的NLP方法,并提供了一个更详细的讨论,以及各种示例的潜力和限制。

成为VIP会员查看完整内容
0
99

深度神经网络在图像识别、语言识别和机器翻译等人工智能任务中取得了巨大进展,很大程度上归功于优秀的神经网络结构设计。神经网络大都由手工设计,需要专业的机器学习知识以及大量的试错。为此,自动化的神经网络结构搜索成为研究热点。神经网络结构搜索(neural architecture search,NAS)主要由搜索空间、搜索策略与性能评估方法3部分组成。在搜索空间设计上,出于计算量的考虑,通常不会搜索整个网络结构,而是先将网络分成几块,然后搜索块中的结构。根据实际情况的不同,可以共享不同块中的结构,也可以对每个块单独搜索不同的结构。在搜索策略上,主流的优化方法包含强化学习、进化算法、贝叶斯优化和基于梯度的优化等。在性能评估上,为了节省计算时间,通常不会将每一个网络都充分训练到收敛,而是通过权值共享、早停等方法尽可能减小单个网络的训练时间。与手工设计的网络相比,神经网络结构搜索得到的深度神经网络具有更好的性能。在ImageNet分类任务上,与手工设计的MobileNetV2相比,通过神经网络结构搜索得到的MobileNetV3减少了近30%的计算量,并且top-1分类精度提升了3.2%;在Cityscapes语义分割任务上,与手工设计的DeepLabv3+相比,通过神经网络结构搜索得到的Auto-DeepLab-L可以在没有ImageNet预训练的情况下,达到比DeepLabv3+更高的平均交并比(mean intersection over union,mIOU),同时减小一半以上的计算量。神经网络结构搜索得到的深度神经网络通常比手工设计的神经网络有着更好的表现,是未来神经网络设计的发展趋势。

http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210202&flag=1

成为VIP会员查看完整内容
0
35

随着深度学习的快速发展, 生成式模型领域也取得了显著进展. 生成对抗网络(Generative adversarial network, GAN)是一种无监督的学习方法, 它是根据博弈论中的二人零和博弈理论提出的. GAN具有一个生成器网络和一个判别器网络, 并通过对抗学习进行训练. 近年来, GAN成为一个炙手可热的研究方向. GAN不仅在图像领域取得了不错的成绩, 还在自然语言处理(Natural language processing, NLP)以及其他领域崭露头角. 本文对GAN的基本原理、训练过程和传统GAN存在的问题进行了阐述, 进一步详细介绍了通过损失函数的修改、网络结构的变化以及两者结合的手段提出的GAN变种模型的原理结构, 其中包括: 条件生成对抗网络(Conditional GAN, CGAN)、基于Wasserstein 距离的生成对抗网络(Wasserstein-GAN, WGAN)及其基于梯度策略的WGAN (WGAN-gradient penalty, WGAN-GP)、基于互信息理论的生成对抗网络(Informational-GAN, InfoGAN)、序列生成对抗网络(Sequence GAN, SeqGAN)、Pix2Pix、循环一致生成对抗网络(Cycle-consistent GAN, Cycle GAN)及其增强Cycle-GAN (Augmented CycleGAN). 概述了在计算机视觉、语音与NLP领域中基于GAN和相应GAN变种模型的基本原理结构, 其中包括: 基于CGAN的脸部老化应用(Face aging CGAN, Age-cGAN)、双路径生成对抗网络(Two-pathway GAN, TP-GAN)、表示解析学习生成对抗网络(Disentangled representation learning GAN, DR-GAN)、对偶学习生成对抗网络(DualGAN)、GeneGAN、语音增强生成对抗网络(Speech enhancement GAN, SEGAN)等. 介绍了GAN在医学、数据增强等领域的应用情况, 其中包括: 数据增强生成对抗网络(Data augmentation GAN, DAGAN)、医学生成对抗网络(Medical GAN, MedGAN)、无监督像素级域自适应方法(Unsupervised pixel-level domain adaptation method, PixelDA). 最后对GAN未来发展趋势及方向进行了展望.

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c180831

成为VIP会员查看完整内容
0
86

摘要:随着计算机行业和互联网时代的不断发展与进步,图神经网络已经成为人工智能和大数据重要研究领域。图神经网络是对相邻节点间信息的传播和聚合的重要技术,可以有效地将深度学习的理念应用于非欧几里德空间的数据上。简述图计算、图数据库、知识图谱、图神经网络等图技术领域的相关研究历史,分类介绍不同类型的图结构。分析对比不同的图神经网络技术,重点从频域和空间与的信息聚合方式上分类比较不同的图卷积网络算法。阐述图生成和图对抗网络、图强化学习、图迁移学习、神经任务图和图零样本学习等不同的图网络与深度学习方法相结合的技术方法,并列举不同的图神经网络技术在文本、图像、知识图谱、视频任务等领域的具体应用。最后,对图神经网络未来的发展与研究方向加以展望。

https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJDAY&filename=JSJC20201123000&v=fpDLQvPDFGeYvQeSgmnh5h1YpkO6G1W6SQqt4w%25mmd2B%25mmd2BnZtjD3h80wKsQ5NhpJeXgtGI

概述

近年来随着计算机行业的快速发展和数据量的井喷式增长,深度学习方法被提出并得到了广泛的 应用。深度学习通过神经网络端到端的解决方案, 在图像处理、语音识别、语义理解[1]等领域取得了 巨大的成功,深度学习的应用往往都是在高维特征 空间上特征规则分布的欧几里德数据。作为一种关 系型数据结构,图(Graph)在深度学习中的应用研究近年来受到越来越多的关注,本文将图的演进历程分为数学起源、计算应用、神经网络延伸三个阶段。

图的概念起源于 18 世纪著名的柯尼斯堡七桥问 题,到了 20 世纪中期,拟阵理论、超图理论、极图 理论等研究蓬勃发展,使得图论(Graph Theory)[2] 在电子计算诞生前,就已经成为了重要的数学研究领域。

随着计算机的出现和机器计算时代的到来和发 展,图作为一种能够有效且抽象地表达信息和数据 中的实体以及实体之间关系的重要数据结构被广泛应用,图数据库有效解决了传统的关系型数据结构 面对大量复杂的数据所暴露出的建模缺陷多、计算速度慢等问题,图数据库也成为了非常热门的研究 领域。图结构(Graph-structured Data)[3]可以将结构化数据点通过边的形式,依照数据间的关系将不同类型和结构的数据节点连接起来,因而被广泛地应用在数据的存储、检索以及计算应用中。基于图结构数据,知识图谱[4-7]可以通过点和边的语义关系, 来实现精确地描述现实世界中实体之间的关联关系, 作为人工智能非常重要的研究领域,知识图谱的研究方向包括知识抽取、知识推理、知识图谱可视化等。图计算(Graph Computing)具有数据规模量大、 局部性低、计算性能高等特性,图计算算法[8-9]主要 可以分为路径搜索算法、中心性算法、社群发现算法等三类,实现了在关系复杂型的大规模数据上高 时效性和准确度的表现,在社交网络、团体反欺诈 和用户推荐等领域有着重要的应用。

与已经非常成熟图计算不同,图神经网络 (Graph Neural Network)的研究主要是集中在相邻节点信息的传播与聚合上,从图神经网络的概念提 出,到受深度学习中卷积神经网络的启发,2013 年 提出的基于图论的图卷积神经网络 [10-11]研究方向吸 引了大量学者关注。2018 年 DeepMind 提出图网络 (Graph Network)[12]的概念,希望能够将深度学习 端到端的学习方式与图结构关系归纳推理的理论结 合解决深度学习无法处理关系推理的问题。针对图 神经网络存在的问题,不同的学者们也给出了不同 的方案,随着对图神经网络这一新兴领域更加深入 的研究与探索,人工智能领域的版图将得到更大扩展。

文献[12]在关系归纳偏置和深度学习的研究基础 上,提出了面向关系推理的图网络概念并进行了综 述,但未对不同图网络技术进行分类和对比。文献 [13]从半监督、无监督方法的角度对图结构上的深度 学习进行了综述,但缺少相近的分类和应用的讨论。文献[14]主要从传播规则、网络结构等角度分析了图神经网络的不同模型以及应用。文献[15]则是详细对 比了时域和空间的不同图卷神经网络方法结构,但没有对图神经网络之于深度学习领域的探讨,如图强化学习、图迁移学习等。本文针对图神经网络, 分析对比了六种图神经网络方法的优劣,首次对处 理异构图数据的图神经网络技术进行了讨论和研究, 综述了五类图神经网络的研究领域,并对未来的发展方向进行了展望。

成为VIP会员查看完整内容
0
193

通过学习可观测数据的概率密度而随机生成样本的生成模型在近年来受到人们的广泛关注, 网络结构中包含多个隐藏层的深度生成式模型以更出色的生成能力成为研究热点, 深度生成模型在计算机视觉、密度估计、自然语言和语音识别、半监督学习等领域得到成功应用, 并给无监督学习提供了良好的范式. 本文根据深度生成模型处理似然函数的不同方法将模型分为三类: 第一类方法是近似方法, 包括采用抽样方法近似计算似然函数的受限玻尔兹曼机和以受限玻尔兹曼机为基础模块的深度置信网络、深度玻尔兹曼机和亥姆霍兹机, 与之对应的另一种模型是直接优化似然函数变分下界的变分自编码器以及其重要的改进模型, 包括重要性加权自编码和可用于半监督学习的深度辅助深度模型; 第二类方法是避开求极大似然过程的隐式方法, 其代表模型是通过生成器和判别器之间的对抗行为来优化模型参数从而巧妙避开求解似然函数的生成对抗网络以及重要的改进模型, 包括WGAN、深度卷积生成对抗网络和当前最顶级的深度生成模型BigGAN; 第三类方法是对似然函数进行适当变形的流模型和自回归模型, 流模型利用可逆函数构造似然函数后直接优化模型参数, 包括以NICE为基础的常规流模型、变分流模型和可逆残差网络(i-ResNet), 自回归模型(NADE)将目标函数分解为条件概率乘积的形式, 包括神经自回归密度估计(NADE)、像素循环神经网络(PixelRNN)、掩码自编码器(MADE)以及WaveNet等. 详细描述上述模型的原理和结构以及模型变形后, 阐述各个模型的研究进展和应用, 最后对深度生成式模型进行展望和总结.

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190866

受益于当前计算机性能的快速提升, 学习可观测样本的概率密度并随机生成新样本的生成模型成为热点. 相比于需要学习条件概率分布的判别模型, 生成模型的训练难度大、模型结构复杂, 但除了能够生成新样本外, 生成模型在图像重构、缺失数据填充、密度估计、风格迁移和半监督学习等应用领域也获得了巨大的成功. 当前可观测样本的数量和维数都大幅度增加, 浅层的生成模型受到性能瓶颈的限制而无法满足应用需求, 从而被含有多个隐藏层的深度生成模型替代, 深度生成模型能够学习到更好的隐表示, 模型性能更好. 本文对有重要意义的深度生成模型进行全面的分析和讨论, 对各大类模型的结构和基本原理进行梳理和分类. 本文第1节介绍深度生成模型的概念和分类; 第2节介绍受限玻尔兹曼机和以受限玻尔兹曼机为基础模块的几种深度生成模型, 重点内容是各种模型的不同训练算法; 第3节介绍变分自编码器的基本结构、变分下界的推理和重参数化方法; 第4节介绍生成对抗网络, 主要内容为模型原理、训练方法和稳定性研究, 以及两种重要的模型结构; 第5节总结了流模型的结构, 详细介绍了流模型的技术特点; 第6节分析了自回归模型的模型结构以及几种重要分支的研究进展; 第7节将介绍生成模型中的两个小分支: 矩阵匹配模型和随机生成模型; 第8节对深度生成模型存在的问题进行分析讨论, 并对未来的研究方向和发展趋势做出了展望.

成为VIP会员查看完整内容
0
94

摘要: 近年来, 卷积神经网络(Convolutional neural network, CNNs)在计算机视觉、自然语言处理、语音识别等领域取得了突飞猛进的发展, 其强大的特征学习能力引起了国内外专家学者广泛关注.然而, 由于深度卷积神经网络普遍规模庞大、计算度复杂, 限制了其在实时要求高和资源受限环境下的应用.对卷积神经网络的结构进行优化以压缩并加速现有网络有助于深度学习在更大范围的推广应用, 目前已成为深度学习社区的一个研究热点.本文整理了卷积神经网络结构优化技术的发展历史、研究现状以及典型方法, 将这些工作归纳为网络剪枝与稀疏化、张量分解、知识迁移和精细模块设计4个方面并进行了较为全面的探讨.最后, 本文对当前研究的热点与难点作了分析和总结, 并对网络结构优化领域未来的发展方向和应用前景进行了展望.

成为VIP会员查看完整内容
0
45

近年来, 随着海量数据的涌现, 可以表示对象之间复杂关系的图结构数据越来越受到重视并给已有的算法带来了极大的挑战. 图神经网络作为可以揭示深层拓扑信息的模型, 已开始广泛应用于诸多领域,如通信、生命科学和经济金融等. 本文对近几年来提出的图神经网络模型和应用进行综述, 主要分为以下几类:基于空间方法的图神经网络模型、基于谱方法的图神经网络模型和基于生成方法的图神经网络模型等,并提出可供未来进一步研究的问题.

http://engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext

图是对对象及其相互关系的一种简洁抽象的直观数学表达. 具有相互关系的数据—图结构数据在众多领域普遍存在, 并得到广泛应用. 随着大量数据的涌现, 传统的图算法在解决一些深层次的重要问题, 如节点分类和链路预测等方面有很大的局限性. 图神经网络模型考虑了输入数据的规模、异质性和深层拓扑信息等, 在挖掘深层次有效拓扑信息、 提取数据的关键复杂特征和 实现对海量数据的快速处理等方面, 例如, 预测化学分子的特性 [1]、文本的关系提取 [2,3]、图形图像的结构推理 [4,5]、社交网络的链路预测和节点聚类 [6]、缺失信息的网络补全 [7]和药物的相互作用预测 [8], 显示了令人信服的可靠性能.

图神经网络的概念最早于 2005 年由 Gori 等 [9]提出, 他借鉴神经网络领域的研究成果, 设计了一种用于处理图结构数据的模型. 2009 年, Scarselli 等 [10]对此模型进行了详细阐述. 此后, 陆续有关于图神经网络的新模型及应用研究被提出. 近年来, 随着对图结构数据研究兴趣的不断增加, 图神经网络研究论文数量呈现出快速上涨的趋势, 图神经网络的研究方向和应用领域都得到了很大的拓展.

目前已有一些文献对图神经网络进行了综述. 文献 [11]对图结构数据和流形数据领域的深度学习方法进行了综述, 侧重于将所述各种方法置于一个称为几何深度学习的统一框架之内; 文献[12]将图神经网络方法分为三类: 半监督学习、无监督学习和最新进展, 并根据发展历史对各种方法进行介绍、分析和对比; 文献[13]介绍了图神经网络原始模型、变体和一般框架, 并将图神经网络的应用划分为结构场景、非结构场景和其他场景; 文献[14]提出了一种新的图神经网络分类方法, 重点介绍了图卷积网络, 并总结了图神经网络方法在不同学习任务中的开源代码和基准.

本文将对图神经网络模型的理论及应用进行综述, 并讨论未来的方向和挑战性问题. 与其他综述文献的不同之处在于, 我们给出新的分类标准, 并且介绍图神经网络丰富的应用成果. 本文具体结构如下: 首先介绍三类主要的图神经网络模型, 分别是基于空间方法的图神经网络、基于谱方法的图神经网络和基于生成方法的图神经网络等; 然后介绍模型在节点分类、链路预测和图生成等方面的应用; 最后提出未来的研究方向.

成为VIP会员查看完整内容
图神经网络.pdf
0
160

卷积神经网络(Convolutional Neural Network, CNN)是深度学习领域中最重要的网络之一。由于CNN在计算机视觉和自然语言处理等诸多领域都取得了令人瞩目的成就,因此在过去的几年里,CNN受到了业界和学术界的广泛关注。现有的综述主要关注CNN在不同场景下的应用,并没有从整体的角度来考虑CNN,也没有涉及到最近提出的一些新颖的想法。在这篇综述中,我们的目标是在这个快速增长的领域提供尽可能多的新想法和前景。不仅涉及到二维卷积,还涉及到一维和多维卷积。首先,这篇综述首先简单介绍了CNN的历史。第二,我们提供CNN的概述。第三,介绍了经典的和先进的CNN模型,特别是那些使他们达到最先进的结果的关键点。第四,通过实验分析,得出一些结论,并为函数选择提供一些经验法则。第五,介绍了一维、二维和多维卷积的应用。最后,讨论了CNN的一些有待解决的问题和有发展前景的方向,为今后的工作提供参考。

成为VIP会员查看完整内容
0
59
小贴士
相关VIP内容
专知会员服务
99+阅读 · 2月22日
专知会员服务
35+阅读 · 2月12日
专知会员服务
86+阅读 · 2020年12月30日
专知会员服务
193+阅读 · 2020年11月24日
专知会员服务
94+阅读 · 2020年11月23日
【文本分类大综述:从浅层到深度学习,35页pdf】
专知会员服务
112+阅读 · 2020年8月6日
专知会员服务
45+阅读 · 2020年8月4日
最新《图神经网络模型与应用》综述论文
专知会员服务
160+阅读 · 2020年8月2日
专知会员服务
59+阅读 · 2020年4月7日
相关论文
Alberto Bemporad
0+阅读 · 3月10日
Weiwei Jiang,Jiayun Luo
15+阅读 · 1月27日
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou,Ganqu Cui,Zhengyan Zhang,Cheng Yang,Zhiyuan Liu,Lifeng Wang,Changcheng Li,Maosong Sun
4+阅读 · 2019年7月10日
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
Asifullah Khan,Anabia Sohail,Umme Zahoora,Aqsa Saeed Qureshi
36+阅读 · 2019年1月17日
Analysis Methods in Neural Language Processing: A Survey
Yonatan Belinkov,James Glass
4+阅读 · 2019年1月14日
Ziwei Zhang,Peng Cui,Wenwu Zhu
38+阅读 · 2018年12月11日
Felix Laumann,Kumar Shridhar,Adrian Llopart Maurin
17+阅读 · 2018年6月27日
Seyed Sajad Mousavi,Michael Schukat,Enda Howley
12+阅读 · 2018年6月23日
Vincent Dumoulin,Francesco Visin
6+阅读 · 2018年1月11日
Kang Min Yoo,Youhyun Shin,Sang-goo Lee
8+阅读 · 2017年12月2日
Top