来自DeepMind 的S. M. Ali Eslami · Irina Higgins · Danilo J. Rezende的ICML 2020教程-自监督学习,222页ppt,非常干货!

无标签表示学习,也称为无监督或自监督学习,正在取得重大进展。新的自监督学习方法在大规模基准测试中取得了接近甚至超过了完全监督技术的性能,如图像分类。因此,无标签表示学习最终开始解决现代深度学习中的一些主要挑战。然而,为了继续取得进步,系统地理解学习表示的性质以及产生这些表示的学习目标是很重要的。

成为VIP会员查看完整内容
0
66

相关内容

本教程探索了两个研究领域,即永无休止的学习(NEL)和问题回答(QA)。NEL系统[2]是一种非常高级的计算机系统,它可以随着时间的推移而在解决任务方面变得更好。不同的NEL方法被提出并应用于不同的任务和领域,其结果还不能推广到每个领域,但鼓励我们不断解决如何构建能够利用NEL原则的计算机系统的问题。将NEL原则应用于ML模型并不总是那么简单。在本教程中,我们希望展示(通过实际示例和支持的理论、算法和模型)如何以NEL的方式对问题建模,并帮助KDD社区熟悉这些方法。

我们日常生活中出现了许多问答系统(如IBM Watson、亚马逊Alexa、苹果Siri、MS Cortana、谷歌Home等),以及最近发布的专注于开放领域问答的新的、更大的数据集,这些都促使人们对问答和能够执行问答的系统越来越感兴趣。但是,尽管过去几年取得了进步,开放领域的问题回答模型还不能取得与人类性能相媲美的结果。因此,开放域QA往往是用NEL方法建模的一个很好的候选对象。本教程旨在使与会者能够:

  • 更好地了解当前NEL和QA方面的最新技术。
  • 学习如何使用NEL方法建模ML问题。
  • 准备好跟随NEL-QA的想法,并提出新的方法来提高QA系统的性能。
成为VIP会员查看完整内容
0
34

许多ML任务与信号处理有共同的实际目标和理论基础(例如,光谱和核方法、微分方程系统、顺序采样技术和控制理论)。信号处理方法是ML许多子领域中不可分割的一部分,例如,强化学习,哈密顿蒙特卡洛,高斯过程(GP)模型,贝叶斯优化,神经ODEs /SDEs。

本教程旨在涵盖与离散时间和连续时间信号处理方法相联系的机器学习方面。重点介绍了随机微分方程(SDEs)、状态空间模型和高斯过程模型的递推估计(贝叶斯滤波和平滑)。目标是介绍基本原则之间的直接联系信号处理和机器学习, (2) 提供一个直观的实践理解随机微分方程都是关于什么, (3) 展示了这些方法在加速学习的真正好处,提高推理,模型建立,演示和实际应用例子。这将展示ML如何利用现有理论来改进和加速研究,并为从事这些方法交叉工作的ICML社区成员提供统一的概述。

成为VIP会员查看完整内容
0
68

经典的随机优化结果通常假设数据的各种属性的已知值(例如Lipschitz常数、到最优点的距离、平滑性或强凸性常数)。不幸的是,在实践中,这些值是未知的,因此必须经过长时间的反复试验才能找到最佳参数。

为了解决这一问题,近年来许多无参数算法已经被开发用于在线优化和在线学习。无参数算法对数据的性质不作任何假设,但收敛速度与最优优化算法一样快。

这是一项令人兴奋的工作,现在已经足够成熟,可以教授给普通观众了。实际上,这些算法还没有得到机器学习社区的适当介绍,只有少数人完全理解它们。本教程旨在弥补这一差距,介绍使用和设计无参数算法的实践和理论。我们将介绍该领域的最新进展,包括优化、深度学习和使用内核学习的应用。

https://parameterfree.com/icml-tutorial/

成为VIP会员查看完整内容
0
40

本教程对基于模型的强化学习(MBRL)领域进行了广泛的概述,特别强调了深度方法。MBRL方法利用环境模型来进行决策——而不是将环境视为一个黑箱——并且提供了超越无模型RL的独特机会和挑战。我们将讨论学习过渡和奖励模式的方法,如何有效地使用这些模式来做出更好的决策,以及规划和学习之间的关系。我们还强调了在典型的RL设置之外利用世界模型的方式,以及在设计未来的MBRL系统时,从人类认知中可以得到什么启示。

https://sites.google.com/view/mbrl-tutorial

近年来,强化学习领域取得了令人印象深刻的成果,但主要集中在无模型方法上。然而,社区认识到纯无模型方法的局限性,从高样本复杂性、需要对不安全的结果进行抽样,到稳定性和再现性问题。相比之下,尽管基于模型的方法在机器人、工程、认知和神经科学等领域具有很大的影响力,但在机器学习社区中,这些方法的开发还不够充分(但发展迅速)。它们提供了一系列独特的优势和挑战,以及互补的数学工具。本教程的目的是使基于模型的方法更被机器学习社区所认可和接受。鉴于最近基于模型的规划的成功应用,如AlphaGo,我们认为对这一主题的全面理解是非常及时的需求。在教程结束时,观众应该获得:

  • 数学背景,阅读并跟进相关文献。
  • 对所涉及的算法有直观的理解(并能够访问他们可以使用和试验的轻量级示例代码)。
  • 在应用基于模型的方法时所涉及到的权衡和挑战。
  • 对可以应用基于模型的推理的问题的多样性的认识。
  • 理解这些方法如何适应更广泛的强化学习和决策理论,以及与无模型方法的关系。
成为VIP会员查看完整内容
0
73

哥伦比亚大学Elias Bareinboim副教授ICML 2020教程《因果强化学习》!

因果推理提供了一套工具和原则,允许人们结合数据和环境的结构不变性来推理反事实性质的问题。如果现实不是这样,会发生什么呢? 即使想象中的现实没有数据可用。强化学习关心的是在交互和不确定的环境中有效地找到一个优化特定功能的策略(例如,奖励,后悔)。这两个学科是独立发展的,它们之间几乎没有相互作用。然而,在现实中,它们对同一个构建块的不同方面进行操作,这使得他们紧密相连。

在本教程中,我们将基于这一观察结果引入统一的处理方法,并将这两个学科置于相同的概念和理论框架下。我们表明,当这一联系完全建立时,就会出现许多自然的和普遍的学习问题,而这不能单独从任何一个学科中看到。特别地,我们将讨论广义策略学习(在线、非策略和做微积分学习的组合)、何时何地干预、反事实决策(自由意志、自主、人与人工智能协作)、策略通用性和因果模仿学习等等。这种新的理解导致了对什么是反事实学习的更广泛的观点,并暗示了因果关系和强化学习并行研究的巨大潜力。我们称这种新的研究为“因果强化学习”(简称CRL)。

地址:

https://crl.causalai.net/

成为VIP会员查看完整内容
0
62

无监督学习是机器学习的三个主要分支之一(以及监督学习和强化学习)。它也可以说是最不发达的分支。它的目标是通过发现和利用其隐藏结构来找到对输入数据的简约描述。据推测,与监督学习相比,这更让人联想到大脑的学习方式。此外,假设通过无监督学习发现的表示形式可以缓解深度监督和强化学习中的许多已知问题。但是,由于缺乏明确的ground-truth目标来优化,无监督学习的发展进展缓慢。在本次演讲中,DeepMind研究科学家Irina Higgins和DeepMind研究工程师Mihaela Rosca概述了无监督表示学习的历史作用以及开发和评估此类算法的困难。然后,他们将采取多学科的方法来思考什么可以做一个好的表示方法,以及为什么要这样做,然后再对无监督的表示学习的当前最新方法进行广泛的概述。

成为VIP会员查看完整内容
0
51

借助现代的高容量模型,大数据已经推动了机器学习的许多领域的革命,但标准方法——从标签中进行监督学习,或从奖励功能中进行强化学习——已经成为瓶颈。即使数据非常丰富,获得明确指定模型必须做什么的标签或奖励也常常是棘手的。收集简单的类别标签进行分类对于数百万计的示例来说是不可能的,结构化输出(场景解释、交互、演示)要糟糕得多,尤其是当数据分布是非平稳的时候。

自监督学习是一个很有前途的替代方法,其中开发的代理任务允许模型和代理在没有明确监督的情况下学习,这有助于对感兴趣的任务的下游性能。自监督学习的主要好处之一是提高数据效率:用较少的标记数据或较少的环境步骤(在强化学习/机器人技术中)实现可比较或更好的性能。

自监督学习(self-supervised learning, SSL)领域正在迅速发展,这些方法的性能逐渐接近完全监督方法。

成为VIP会员查看完整内容
0
110
小贴士
相关VIP内容
专知会员服务
34+阅读 · 2020年8月23日
专知会员服务
68+阅读 · 2020年8月15日
专知会员服务
73+阅读 · 2020年8月7日
专知会员服务
40+阅读 · 2020年8月1日
专知会员服务
73+阅读 · 2020年7月20日
专知会员服务
110+阅读 · 2020年5月29日
相关论文
Zhenzhong Lan,Mingda Chen,Sebastian Goodman,Kevin Gimpel,Piyush Sharma,Radu Soricut
9+阅读 · 2019年10月30日
Tutorial on NLP-Inspired Network Embedding
Boaz Shmueli
6+阅读 · 2019年10月16日
Zi-Yi Dou,Keyi Yu,Antonios Anastasopoulos
5+阅读 · 2019年8月27日
H. Ismail Fawaz,G. Forestier,J. Weber,L. Idoumghar,P. Muller
8+阅读 · 2019年3月14日
Joaquin Vanschoren
113+阅读 · 2018年10月8日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms
Cédric Colas,Olivier Sigaud,Pierre-Yves Oudeyer
3+阅读 · 2018年8月17日
Ermo Wei,Drew Wicke,David Freelan,Sean Luke
10+阅读 · 2018年4月25日
Mohammad Raihanul Islam,B. Aditya Prakash,Naren Ramakrishnan
4+阅读 · 2018年3月22日
Lei Zhang,Shuai Wang,Bing Liu
24+阅读 · 2018年1月24日
Top