随着机器学习、图形处理技术和医学成像数据的迅速发展,机器学习模型在医学领域的使用也迅速增加。基于卷积神经网络(CNN)架构的快速发展加剧了这一问题,医学成像社区采用这种架构来帮助临床医生进行疾病诊断。自2012年AlexNet取得巨大成功以来,CNNs越来越多地被用于医学图像分析,以提高临床医生的工作效率。近年来,三维(3D) CNNs已被用于医学图像分析。在这篇文章中,我们追溯了3D CNN的发展历史,从它的机器学习的根源,简单的数学描述3D CNN和医学图像在输入到3D CNNs之前的预处理步骤。我们回顾了在不同医学领域,如分类、分割、检测和定位,使用三维CNNs(及其变体)进行三维医学成像分析的重要研究。最后,我们讨论了在医学成像领域使用3D CNNs的挑战(以及使用深度学习模型)和该领域可能的未来趋势。

成为VIP会员查看完整内容
0
33

相关内容

语义图像分割任务包括将图像的每个像素分类为一个实例,其中每个实例对应一个类。这个任务是场景理解或更好地解释图像的全局上下文概念的一部分。在医学图像分析领域,图像分割可用于图像引导干预、放疗或改进的放射诊断。本综述将基于深度学习的医学和非医学图像分割解决方案分为六大组:深度架构、基于数据合成、基于损失函数、排序模型、弱监督和多任务方法,并对每一组的贡献进行全面综述。然后,针对每一组,我们分析了每一组的不同,并讨论了当前方法的局限性和未来语义图像分割的研究方向。

成为VIP会员查看完整内容
0
35

虽然像CNNs这样的深度学习模型在医学图像分析方面取得了很大的成功,但是小型的医学数据集仍然是这一领域的主要瓶颈。为了解决这个问题,研究人员开始寻找现有医疗数据集之外的外部信息。传统的方法通常利用来自自然图像的信息。最近的研究利用了来自医生的领域知识,通过让网络模仿他们如何被训练,模仿他们的诊断模式,或者专注于他们特别关注的特征或领域。本文综述了将医学领域知识引入疾病诊断、病变、器官及异常检测、病变及器官分割等深度学习模型的研究进展。针对不同类型的任务,我们系统地对所使用的不同类型的医学领域知识进行了分类,并给出了相应的整合方法。最后,我们总结了挑战、未解决的问题和未来研究的方向。

成为VIP会员查看完整内容
0
46

【导读】时尚是我们向世界展示自己的方式,并已成为世界上最大的产业之一。时尚主要通过视觉传达,近些年来已经吸引了诸多计算机视觉研究者的关注。基于这个领域的快速发展,本文对200多篇与时尚相关的论文进行了全面的概述,从四个方面对实现智能型时尚进行介绍与探讨;(1)时尚检测包括特征点检测(landmark detection),时尚解析和条目检索,(2)时尚分析包括属性识别,款式学习和流行预测,(3)时尚合成包括风格转换、姿势转换和物理模拟,(4)时尚推荐包括时尚搭配、服装搭配、发型建议。针对每项任务,我们总结了基准数据集和各种评估方式。此外,我们强调了未来有希望的研究方向。

介绍

时尚就是某种我们把自己展示给世界的方式。我们的穿着和打扮方式决定了我们独一无二的风格和与众不同。时尚在现代社会已经成为我们不可或缺的一部分。不出所料,仅全球服装市场就已超过3万亿美元,占世界国内生产总值(GDP)的近2%。具体来说,到2020年,时尚领域的收入将超过7180亿美元,预计年增长率将达到8.4%。

随着人工智能中计算机视觉的高速发展,人工智能已经开启了时尚界的大门,通过电子零售,个性化的设计师到时尚设计流程来重塑我们的时尚生活。在这篇论文中我们把计算机视觉时装技术称为智能时装。从技术上讲,智能时尚是一项具有挑战性的任务,因为与一般对象不同,时尚物品在风格和设计上存在很大的差异,最重要的是,可计算的低级特征和我们所编码的高级语义概念之间存在着巨大且长期的语义鸿沟。

文章的贡献点如下:

我们对目前在时尚领域最先进的研究成果进行了全面的调查,并将时尚研究主题分为四个主要类别:检测,分析,合成和建议。

对于智能时尚研究中的每一个类别,我们都会对其中最重要的方法及其贡献进行深入和系统的回顾。此外,我们还总结了各种基准数据集以及到相应门户网站的链接。

我们收集了不同任务的评估指标,并给出不同方法性能之间的比较。

我们列出了未来可能的研究方向,这有助于促进和激励这一领域的发展。

2.时尚检测

由于大多数和时尚相关的研究工作的第一步就是检测,所以时尚检测技术是重中之重。以虚拟试穿为例,它需要提前探测输入的图片中关于人体的各种信息,包括但不限于体型的信息、身体的位置,然后对推荐的服饰进行合成。因此,检测是大多数后续工作的基础。在这一章节中,我们主要关注时尚检测任务,从三个方面对其进行介绍:特征点检测,时尚解析和条目检索。每一个方面都会介绍先进的方法,基准数据集以及方法之间的比较。

3.时尚分析

时尚不仅仅是关于人们应该穿什么而且还反应了人们的性格特点,会流露出其他社会线索。智能时尚分析在时尚产业、精准营销、社会学分析等领域有着巨大的发展潜力,因此,对人们选择穿什么款式的衣服进行推荐的智能时尚分析近年来受到越来越多的关注。在这一章节,我们主要关注时尚分析领域中的三个领域:属性识别,款式学习和流行预测。对于每一个领域,我们都会介绍该领域中的先进方法,基准数据及和方法之间的比较。

4.时尚合成

给出一个人的照片,我们要能够想象这个人喜欢什么样的打扮风格和服饰穿着。我们可以通过一张现实生活中的照片进行综合分析。在这一章节中,我们回顾了这项任务的发展历程,包括风格转换、姿态转换和物理模拟。

5.时尚推荐

尽管不是每个人天生就是一个时尚家。根据自身的需求,时尚推荐已经吸引了越来越多的关注。和时尚推荐相关的文献可以被分为三个主要的类别:时尚搭配,服装搭配和发型建议。

成为VIP会员查看完整内容
0
15

简介

近年来,由于机器学习(ML)/深度学习(DL)技术使用多维医学图像,在从一维心脏信号的心脏骤停的预测到计算机辅助诊断(CADx)的各种医疗保健应用中的卓越性能,见证了机器学习(ML)/深度学习(DL)技术的广泛采用。尽管ML / DL的性能令人印象深刻,但对于ML / DL在医疗机构中的健壮性仍然存有疑虑(由于涉及众多安全性和隐私问题,传统上认为ML / DL的挑战性很大),尤其是鉴于最近的研究结果表明ML / DL容易受到对抗性攻击。在本文中,我们概述了医疗保健中各个应用领域,这些领域从安全性和隐私性的角度利用了这些技术,并提出了相关的挑战。此外,我们提出了潜在的方法来确保医疗保健应用程序的安全和隐私保护机器学习。最后,我们提供了有关当前研究挑战的见解以及未来研究的有希望的方向。

内容大纲

成为VIP会员查看完整内容
0
28

摘要:深度学习是近年来应用最广泛的心脏图像分割方法。在这篇文章中,我们回顾了超过100篇使用深度学习的心脏图像分割论文,这些论文涵盖了常见的成像方式,包括磁共振成像(MRI)、计算机断层扫描(CT)和超声(US)以及感兴趣的主要解剖结构(心室、心房和血管)。此外,公开可用的心脏图像数据集和代码库的摘要也包括在内,为鼓励重复性研究提供了基础。最后,我们讨论了当前基于深度学习的方法的挑战和局限性(缺乏标签、不同领域的模型可泛化性、可解释性),并提出了未来研究的潜在方向。

成为VIP会员查看完整内容
0
16

Deep Learning based Recommender System: A Survey and New Perspectives

随着在线信息量的不断增长,推荐系统已成为克服此类信息过载的有效策略。鉴于其在许多网络应用中的广泛采用,以及其改善与过度选择相关的许多问题的潜在影响,推荐系统的实用性不容小觑。近年来,深度学习在计算机视觉和自然语言处理等许多研究领域引起了相当大的兴趣,不仅归功于出色的表现,而且还具有从头开始学习特征表征的吸引人的特性。深度学习的影响也很普遍,最近证明了它在应用于信息检索和推荐系统研究时的有效性。显然,推荐系统中的深度学习领域正在蓬勃发展。本文旨在全面回顾最近基于深度学习的推荐系统的研究工作。更具体地说,我们提供并设计了基于深度学习的推荐模型的分类,并提供了最新技术的综合摘要。最后,我们扩展了当前的趋势,并提供了有关该领域新的令人兴奋的发展的新观点。

成为VIP会员查看完整内容
0
96
小贴士
相关资讯
最全综述 | 医学图像处理
计算机视觉life
23+阅读 · 2019年6月15日
深度学习与医学图像分析
人工智能前沿讲习班
18+阅读 · 2019年6月8日
自动驾驶最新综述论文(31页PDF下载)
专知
73+阅读 · 2019年1月15日
从0到1,这篇深度学习综述送给你!
机器学习算法与Python学习
16+阅读 · 2018年6月13日
相关论文
A survey on deep hashing for image retrieval
Xiaopeng Zhang
7+阅读 · 6月10日
3D Deep Learning on Medical Images: A Review
Satya P. Singh,Lipo Wang,Sukrit Gupta,Haveesh Goli,Parasuraman Padmanabhan,Balázs Gulyás
5+阅读 · 4月1日
FocalMix: Semi-Supervised Learning for 3D Medical Image Detection
Dong Wang,Yuan Zhang,Kexin Zhang,Liwei Wang
7+阅读 · 3月20日
Mingzhen Li,Yi Liu,Xiaoyan Liu,Qingxiao Sun,Xin You,Hailong Yang,Zhongzhi Luan,Depei Qian
7+阅读 · 2月6日
1D Convolutional Neural Networks and Applications: A Survey
Serkan Kiranyaz,Onur Avci,Osama Abdeljaber,Turker Ince,Moncef Gabbouj,Daniel J. Inman
3+阅读 · 2019年5月9日
Deep Learning for Energy Markets
Michael Polson,Vadim Sokolov
3+阅读 · 2019年4月10日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
6+阅读 · 2019年1月16日
Self-Driving Cars: A Survey
Claudine Badue,Rânik Guidolini,Raphael Vivacqua Carneiro,Pedro Azevedo,Vinicius Brito Cardoso,Avelino Forechi,Luan Ferreira Reis Jesus,Rodrigo Ferreira Berriel,Thiago Meireles Paixão,Filipe Mutz,Thiago Oliveira-Santos,Alberto Ferreira De Souza
24+阅读 · 2019年1月14日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
3+阅读 · 2018年10月11日
Thomas Elsken,Jan Hendrik Metzen,Frank Hutter
7+阅读 · 2018年9月5日
Top