这本书来自统计学习课程,这是一门统计机器学习的入门课程,面向具有一些微积分、线性代数和统计学背景的学生。这门课程的重点是监督学习:分类和回归。本课程将涵盖机器学习和数据科学中使用的一系列方法,包括:

  • 线性回归(包括岭回归和Lasso)
  • 通过logistic回归和k近邻进行分类
  • 线性和二次判别分析
  • 回归和分类树(包括套袋林和随机林)
  • Boosting
  • 神经网络和深度学习

这些方法将在整个课程中被研究并应用于来自各种应用的真实数据。课程还涵盖了一些重要的实际问题,如交叉验证、模型选择和偏方差权衡。课程包括理论(例如,推导和证明)以及实践(特别是实验室和小型项目)。实际部分将使用Python实现。

成为VIP会员查看完整内容
0
76

相关内容

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
74

探索多年来用户研究如何受到一系列学科的影响,如人机交互、可用性、人类学、认知心理学、人体工程学等。本书旨在为用户研究社区做出贡献,涵盖的主题将帮助用户体验专业人士、学生和利益相关者更好地理解什么是用户研究。

通过这本书,你将获得一套实用的技能,范围从如何进行研究,以建立一个案例,以获得所需的预算和资源。它将为你提供一个如何组织你的研究,如何计划它,以及如何在整个项目中管理利益相关者的期望的清晰的说明。您将看到如何将用户研究融入到您的组织中,并在不同的产品开发阶段(发现、Alpha、Beta直到上线)将其结合起来,以及如何发展一个用户研究团队。

《实用用户研究》回顾了用于用户研究的方法论,着眼于如何招募参与者,如何收集和分析数据,最后关注如何解释和展示你的发现。跨文化研究、可及性和辅助数字研究也将在本书中讨论。最后一章给你10个项目概要,你将能够应用你的新技能集,并将你所学到的付诸实践。

你将学习:

  • 将用户研究整合到你的业务中
  • 将用户研究应用到产品开发周期中
  • 审查进行用户研究所需的适当程序
  • 用一种实用的方法进行用户研究

这本书是给谁的:

  • 任何想了解更多用户研究的人。
成为VIP会员查看完整内容
0
45

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
108

了解深度学习,不同模型的细微差别,以及这些模型可以应用的地方。

丰富的数据和对优质产品/服务的需求,推动了先进的计算机科学技术的发展,其中包括图像和语音识别。通过机器学习和深度学习建立在数据科学的基础上,《使用R进行深度学习的介绍》提供了对执行这些任务的模型的理论和实践理解。这个分步指南将帮助您理解这些规程,以便您可以在各种上下文中应用该方法。所有的例子都是用R统计语言教授的,允许学生和专业人员使用开源工具来实现这些技术。

你将学习 理解支持深度学习模型的直觉和数学 利用各种算法使用R编程语言和它的包 使用最佳实践进行实验设计和变量选择 作为一个数据科学家,实践方法来接近和有效地解决问题 评估算法解决方案的有效性并增强其预测能力

这本书是给谁的

熟悉使用R编程的学生、研究人员和数据科学家也可以使用这本书来学习如何在最有用的应用程序中适当地部署这些算法。

成为VIP会员查看完整内容
0
24

高斯过程(GPs)为核机器的学习提供了一种有原则的、实用的、概率的方法。在过去的十年中,GPs在机器学习社区中得到了越来越多的关注,这本书提供了GPs在机器学习中理论和实践方面长期需要的系统和统一的处理。该书是全面和独立的,针对研究人员和学生在机器学习和应用统计学。

这本书处理监督学习问题的回归和分类,并包括详细的算法。提出了各种协方差(核)函数,并讨论了它们的性质。从贝叶斯和经典的角度讨论了模型选择。讨论了许多与其他著名技术的联系,包括支持向量机、神经网络、正则化网络、相关向量机等。讨论了包括学习曲线和PAC-Bayesian框架在内的理论问题,并讨论了几种用于大数据集学习的近似方法。这本书包含说明性的例子和练习,和代码和数据集在网上是可得到的。附录提供了数学背景和高斯马尔可夫过程的讨论。

成为VIP会员查看完整内容
0
86

本文采用了一种独特的机器学习方法,它包含了对进行研究、开发产品、修补和玩耍所必需的所有基本概念的全新的、直观的、但又严谨的描述。通过优先考虑几何直观,算法思维,和实际应用的学科,包括计算机视觉,自然语言处理,经济学,神经科学,推荐系统,物理,和生物学,这篇文章为读者提供了一个清晰的理解基础材料以及实际工具需要解决现实世界的问题。通过深入的Python和基于MATLAB/ octave的计算练习,以及对前沿数值优化技术的完整处理,这是学生的基本资源,也是从事机器学习、计算机科学、电子工程、信号处理和数值优化的研究人员和实践者的理想参考。其他资源包括补充讨论主题、代码演示和练习,可以在官方教材网站mlrefined.com上找到。

  • 建立在清晰的几何直觉上的讲述
  • 最先进的数值优化技术的独特处理
  • 逻辑回归和支持向量机的融合介绍
  • 将功能设计和学习作为主要主题
  • 通过函数逼近的视角,先进主题的无与伦比的呈现
  • 深度神经网络和核方法的细化描述
成为VIP会员查看完整内容
0
99

本书概述了现代数据科学重要的数学和数值基础。特别是,它涵盖了信号和图像处理(傅立叶、小波及其在去噪和压缩方面的应用)、成像科学(反问题、稀疏性、压缩感知)和机器学习(线性回归、逻辑分类、深度学习)的基础知识。重点是对方法学工具(特别是线性算子、非线性逼近、凸优化、最优传输)的数学上合理的阐述,以及如何将它们映射到高效的计算算法。

https://mathematical-tours.github.io/book/

它应该作为数据科学的数字导览的数学伴侣,它展示了Matlab/Python/Julia/R对这里所涵盖的所有概念的详细实现。

成为VIP会员查看完整内容
0
192

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
178

对因果推理的简明和自成体系的介绍,在数据科学和机器学习中越来越重要。

因果关系的数学化是一个相对较新的发展,在数据科学和机器学习中变得越来越重要。这本书提供了一个独立的和简明的介绍因果模型和如何学习他们的数据。在解释因果模型的必要性,讨论潜在的因果推论的一些原则,这本书教读者如何使用因果模型:如何计算干预分布,如何从观测推断因果模型和介入的数据,和如何利用因果思想经典的机器学习问题。所有这些主题都将首先以两个变量的形式进行讨论,然后在更一般的多元情况下进行讨论。对于因果学习来说,二元情况是一个特别困难的问题,因为经典方法中用于解决多元情况的条件独立不存在。作者认为分析因果之间的统计不对称是非常有意义的,他们报告了他们对这个问题十年来的深入研究。

本书对具有机器学习或统计学背景的读者开放,可用于研究生课程或作为研究人员的参考。文本包括可以复制和粘贴的代码片段、练习和附录,其中包括最重要的技术概念摘要。

首先,本书主要研究因果关系推理子问题,这可能被认为是最基本和最不现实的。这是一个因果问题,需要分析的系统只包含两个可观测值。在过去十年中,作者对这个问题进行了较为详细的研究。本书整理这方面的大部分工作,并试图将其嵌入到作者认为对研究因果关系推理问题的选择性至关重要的更大背景中。尽管先研究二元(bivariate)案例可能有指导意义,但按照章节顺序,也可以直接开始阅读多元(multivariate)章节;见图一。

第二,本书提出的解决方法来源于机器学习和计算统计领域的技术。作者对其中的方法如何有助于因果结构的推断更感兴趣,以及因果推理是否能告诉我们应该如何进行机器学习。事实上,如果我们不把概率分布描述的随机实验作为出发点,而是考虑分布背后的因果结构,机器学习的一些最深刻的开放性问题就能得到最好的理解。
成为VIP会员查看完整内容
0
242

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
104
小贴士
相关VIP内容
专知会员服务
74+阅读 · 2020年7月29日
专知会员服务
45+阅读 · 2020年7月21日
【干货书】《机器学习导论(第二版)》,348页pdf
专知会员服务
108+阅读 · 2020年6月16日
专知会员服务
86+阅读 · 2020年5月2日
专知会员服务
192+阅读 · 2020年3月23日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
178+阅读 · 2020年3月17日
专知会员服务
104+阅读 · 2020年2月11日
相关论文
A Collective Learning Framework to Boost GNN Expressiveness
Mengyue Hang,Jennifer Neville,Bruno Ribeiro
18+阅读 · 2020年3月26日
A Modern Introduction to Online Learning
Francesco Orabona
14+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Ruoyu Sun
75+阅读 · 2019年12月19日
Learning to Learn and Predict: A Meta-Learning Approach for Multi-Label Classification
Jiawei Wu,Wenhan Xiong,William Yang Wang
14+阅读 · 2019年9月9日
Shikib Mehri,Maxine Eskenazi
3+阅读 · 2019年8月26日
Siyu He,Yin Li,Yu Feng,Shirley Ho,Siamak Ravanbakhsh,Wei Chen,Barnabás Póczos
3+阅读 · 2018年11月15日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
8+阅读 · 2018年7月8日
Mo Yu,Xiaoxiao Guo,Jinfeng Yi,Shiyu Chang,Saloni Potdar,Yu Cheng,Gerald Tesauro,Haoyu Wang,Bowen Zhou
6+阅读 · 2018年5月19日
Ahmet Iscen,Giorgos Tolias,Yannis Avrithis,Ondrej Chum
6+阅读 · 2018年3月29日
Wenlin Wang,Zhe Gan,Wenqi Wang,Dinghan Shen,Jiaji Huang,Wei Ping,Sanjeev Satheesh,Lawrence Carin
5+阅读 · 2017年12月29日
Top