这本最新的教科书是向数学、计算机科学、工程、统计学、经济学或商业研究的新学生介绍概率论和信息理论的一个极好的方式。它只需要基本的微积分知识,首先建立一个清晰和系统的基础: 通过对布尔代数度量的简化讨论,特别关注概率的概念。这些理论思想随后被应用到实际领域,如统计推断、随机游走、统计力学和通信建模。主题涵盖了离散和连续随机变量,熵和互信息,最大熵方法,中心极限定理和编码和信息传输,并为这个新版本添加了关于马尔可夫链和它们的熵的材料。大量的例子和练习包括说明如何使用理论在广泛的应用,与详细的解决方案,大多数练习可在网上找到。

https://www.cambridge.org/core/books/probability-and-information/26E513C2D4C7B8B0709FBAF95A233959#fndtn-information

成为VIP会员查看完整内容
0
28

相关内容

信息论(英语:information theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。

《量子信息理论》这本书基本上是自成体系的,主要关注构成这门学科基础的基本事实的精确数学公式和证明。它是为研究生和研究人员在数学,计算机科学,理论物理学寻求发展一个全面的理解关键结果,证明技术,和方法,与量子信息和计算理论的广泛研究主题相关。本书对基础数学,包括线性代数,数学分析和概率论有一定的理解。第一章总结了这些必要的数学先决条件,并从这个基础开始,这本书包括清晰和完整的证明它提出的所有结果。接下来的每一章都包含了具有挑战性的练习,旨在帮助读者发展自己的技能,发现关于量子信息理论的证明。

这是一本关于量子信息的数学理论的书,专注于定义、定理和证明的正式介绍。它主要是为对量子信息和计算有一定了解的研究生和研究人员准备的,比如将在本科生或研究生的入门课程中涵盖,或在目前存在的关于该主题的几本书中的一本中。量子信息科学近年来有了爆炸性的发展,特别是在过去的二十年里。对这个问题的全面处理,即使局限于理论方面,也肯定需要一系列的书,而不仅仅是一本书。与这一事实相一致的是,本文所涉及的主题的选择并不打算完全代表该主题。量子纠错和容错,量子算法和复杂性理论,量子密码学,和拓扑量子计算是在量子信息科学的理论分支中发现的许多有趣的和基本的主题,在这本书中没有涵盖。然而,当学习这些主题时,人们很可能会遇到本书中讨论的一些核心数学概念。

https://www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

成为VIP会员查看完整内容
0
46

本教科书通过应用在电气工程和计算机科学(EECS)说明了应用概率的技术。作者介绍了使用基于概率模型和技术的算法的信息处理和通信系统,包括网络搜索、数字链接、语音识别、GPS、路线规划、推荐系统、分类和估计。然后,他解释了这些应用是如何工作的,并在此过程中,为读者提供了应用概率的关键概念和方法的理解。Python实验室使读者能够进行实验并巩固他们的理解。这个版本包括新的主题,统计测试,社会网络,排队网络,和神经网络。有关本书的辅助资料,包括Python演示和伯克利使用的Python实验室的例子。

https://library.oapen.org/handle/20.500.12657/50016

成为VIP会员查看完整内容
1
30

有很多介绍抽象代数概念。然而,对于那些在工程、计算机科学、物理科学、工业或金融领域需要数学背景的人来说,没有哪一个比本书《代数:计算导论》更适合。作者用一种独特的方法和演示,演示了如何使用软件作为解决代数问题的工具。

多种因素使这篇文章与众不同。它清晰的阐述,每一章都建立在前一章的基础上,为读者提供了更清晰的理解。首先介绍置换群,然后是线性群,最后是抽象群。他通过引入伽罗瓦群作为对称群来谨慎地推动伽罗瓦理论。他包括了许多计算,既作为例子,也作为练习。所有这些都是为了帮助读者更好地理解更抽象的概念。

https://www.routledge.com/Algebra-A-Computational-Introduction/Scherk/p/book/9781584880646

通过仔细集成使用的Mathematica®在整个书中的例子和练习,作者帮助读者发展一个更深的理解和欣赏材料。从互联网上下载的大量练习和示例有助于建立有价值的Mathematica工作知识,并为在该领域遇到的复杂问题提供了很好的参考。

成为VIP会员查看完整内容
0
38

本书是信息论领域中一本简明易懂的教材。主要内容包括:熵、信源、信道容量、率失真、数据压缩与编码理论和复杂度理论等方面的介绍。

本书还对网络信息论和假设检验等进行了介绍,并且以赛马模型为出发点,将对证券市场研究纳入了信息论的框架,从新的视角给投资组合的研究带来了全新的投资理念和研究技巧。

本书适合作为电子工程、统计学以及电信方面的高年级本科生和研究生的信息论基础教程教材,也可供研究人员和专业人士参考。

本书是一本简明易懂的信息论教材。正如爱因斯坦所说:“凡事应该尽可能使其简单到不能再简单为止。''虽然我们没有深人考证过该引语的来源(据说最初是在幸运蛋卷中发现的),但我们自始至终都将这种观点贯穿到本书的写作中。信息论中的确有这样一些关键的思想和技巧,一旦掌握了它们、不仅使信息论的主题简明,而且在处理新问題时提供重要的直觉。本书来自使用了十多年的信息论讲义,原讲义是信息论课程的高年级本科生和一年级研究生两学期用的教材。本书打算作为通信理论.计算机科学和统计学专业学生学习信息论的教材。

信息论中有两个简明要点。第一,熵与互信息这样的特殊量是为了解答基本问题而产生的。例如,熵是随机变量的最小描述复杂度,互信息是度量在噪声背景下的通信速率。另外,我们在以后还会提到,互信息相当于已知边信息条件下财富双倍的增长。第二,回答信息理论问邀的答案具有自然的代数结构。例如,熵具有链式法则,因而,谪和互信息也是相关的。因此,数据压缩和通信中的问题得到广泛的解释。我们都有这样的感受,当研究某个问题时,往往历经大量的代数运算推理得到了结果,但此时没有真正了解问题的全莪,最终是通过反复观察结果,才对整个问题有完整、明确的认识。所以,对一个问题的全面理解,不是靠推理,而是靠对结果的观察。要更具体地说明这一点,物理学中的牛顿三大定律和薛定谔波动方程也许是最合适的例子。谁曾预见过薛定谔波动方程后来会有如此令人敬畏的哲学解释呢?

在本书中,我们常会在着眼于问题之前,先了解一下答案的性质。比如第2章中,我们定义熵、相对熵和互信息,研究它们之间的关系,再对这些关系作一点解释·由此揭示如何融会贯通地使用各式各样的方法解决实际问题。同理,我们顺便探讨热力学第二定律的含义。熵总是增加吗?答案既肯定也否定。这种结果会令专家感兴趣,但初学者或i午认为这是必然的而不会深人考虑。

在实际教学中.教师往往会加人一自己的见解。事实上,寻找无人知道的证明或者有所创新的结果是一件很愉快的事情。如果有人将新的思想和已经证明的内容在课堂上讲解给学生,那么不仅学生会积极反馈“对,对,对六而且会大大地提升教授该课程的乐崆我们正是这样从研究本教材的许多新想法中获得乐趣的。

本书加人的新素材实例包括信息论与博弈之间的关系,马尔可夫链背景下热力学第二定律的普遍性问题,信道容量定理的联合典型性证明,赫夫曼码的竞争最优性,以及关于最大熵谱密度估计的伯格(回定理的证明。科尔莫戈罗夫复杂度这一章也是本书的独到之处。面将费希尔信息,互信息、中心极限定理以及布伦一闵可夫斯基不等式与熵幂不等式联系在一起,也是我们引以为豪之处。令我们感到惊讶的是.关于行列式不等式的许多经典结论,当利用信息论不等式后会很容易得到证明。

自从香农的奠基性论文面世以来,尽管信息论已有了相当大的发展,但我们还是要努力强调它的连贯性。虽然香农创立信息论时受到通信理论中的问题启发,然而我们认为信息论是一门独立的学科,可应用于通信理论和统计学中。我们将信息论作为一个学科领域从通信理论、概率论和统计学的背景中独立出来因为明显不可能从这些学科中获得难以理解的信息概念。由于本书中绝大多数结论以定理和证明的形式给出,所以,我们期望通过对这些定理的巧妙证明能说明这些结论的完美性。一般来讲,我们在介绍问题之前先描述回题的解的性质,而这些很有的性质会使接下来的证明顺理成章。

使用不等式串、中间不加任何文字、最后直接加以解释,是我们在表述方式上的一项创新希望读者学习我们所给的证明过程达到一定数量时,在没有任何解释的情况下就能理解其中的大部分步,并自己给出所需的解释这些不等式串好比模拟到试题,读者可以通过它们确认自己是否已掌握证明那些重要定理的必备知识。这些证明过程的自然流程是如此引人注目,以至于导致我们轻视了写作技巧中的某条重要原则。由于没有多余的话,因而突出了思路的逻辑性与主題思想u我们希望当读者阅读完本书后,能够与我们共同分亨我们所推崇的,具有优美、简洁和自然风格的信息论。

本书广泛使用弱的典型序列的方法,此概念可以追溯到香农1948年的创造性工作,而它真正得到发展是在20世纪70年代初期。其中的主要思想就是所谓的渐近均分性(AEP),或许可以粗略地说成“几乎一切事情都是等可能的"

第2章阐述了熵、相对熵和互信息之同的基本代数关系。渐近均分性是第3章重中之重的内容,这也使我们将随机过程和数据压缩的熵率分别放在第4章和第5章中论述。第6章介绍博弈,研究了数据压缩的对偶性和财富的增长率。可作为对信息论进行理性思考基础的科尔莫戈罗夫复杂度,拥有着巨大的成果,放在第14章中论述。我们的目标是寻找一个通用的最矩描述,而不是平均意义下的次佳描述。的确存在这样的普遍性概念用来刻画一个对象的复杂度。该章也论述了神奇数0,揭示数学上的不少奥秘,是图灵机停止运转概率的推广。第7章论述信道容量定理。第8章叙述微分熵的必需知识,它们是将早期容量定理推广到连续噪声信道的基础。基本的高斯信道容量问题在第9章中论述。第il章阐述信息论和统计学之间的关系,20世纪年代初期库尔贝克首次对此进行了研究,此后相对被忽视。由于率失真理论比无噪声数据压缩理论需要更多的背景知识,因而将其放置在正文中比较靠后的第10章。

网络信息理论是个大的主题,安排在第巧章,主要研究的是噪声和干扰存在情形下的同时可达的信息流。有许多新的思想在网络信息理论中开始活跃起来,其主要新要素有干扰和反馈第16章讲述股票市场,这是第6章所讨论的博弈的推广,也再次表明了信息论和博弈之间的紧密联系。第17章讲述信息论中的不等式,我们借此一隅把散布于全书中的有趣不等式重新收拢在一个新的框架中,再加上一些关于随机抽取子集熵率的有趣新不等式。集合和的体积的布伦一闵可夫斯基不等式,独立随机变量之和的有效方差的熵幂不等式以及费希尔信息不等式之间的美妙关系也将在此章中得到详尽的阐述。

本书力求推理严密,因此对数学的要求相当高·要求读者至少学过一学期的概率论课程且有扎实的数学背景,大致为本科高年级或研究生一年级水平。尽管如此,我们还是努力避免使用测度论。因为了解它只对第16章中的遍历过程的AEP的证明过程起到简化作用。这符合我们的观点,那就是信息论基础与技巧不同,后者才需要将所有推广都写进去。

本书的主体是第2,3,4,5,7,8,9,10,11和巧章,它们自成体系,读懂了它们就可以对信息论有很好的理解。但在我们看来,第14章的科尔莫戈罗夫复杂度是深人理解信息论所需的必备知识。余下的几章,从博弈到不等式.目的是使主题更加连贯和完美。

成为VIP会员查看完整内容
0
108

这是我2004年,2006年和2009年在斯坦福大学教授的概率理论博士课程的讲义。本课程的目标是为斯坦福大学数学和统计学系的博士生做概率论研究做准备。更广泛地说,文本的目标是帮助读者掌握概率论的数学基础和在这一领域中证明定理最常用的技术。然后将此应用于随机过程的最基本类的严格研究。

为此,我们在第一章中介绍了测度与积分理论中的相关元素,即事件的概率空间与格-代数、作为可测函数的随机变量、它们的期望作为相应的勒贝格积分,以及独立性的重要概念。

利用这些元素,我们在第二章中研究了随机变量收敛的各种概念,并推导了大数的弱定律和强定律。

第三章讨论了弱收敛的理论、分布函数和特征函数的相关概念以及中心极限定理和泊松近似的两个重要特例。

基于第一章的框架,我们在第四章讨论了条件期望的定义、存在性和性质,以及相关的规则条件概率分布。

第五章讨论了过滤、信息在时间上的级数的数学概念以及相应的停止时间。关于后者的结果是作为一组称为鞅的随机过程研究的副产品得到的。讨论了鞅表示、极大不等式、收敛定理及其各种应用。为了更清晰和更容易的表述,我们在这里集中讨论离散时间的设置来推迟与第九章相对应的连续时间。

第六章简要介绍了马尔可夫链的理论,概率论的核心是一个庞大的主题,许多教科书都致力于此。我们通过研究一些有趣的特殊情况来说明这类过程的一些有趣的数学性质。

在第七章中,我们简要介绍遍历理论,将注意力限制在离散时间随机过程的应用上。我们定义了平稳过程和遍历过程的概念,推导了Birkhoff和Kingman的经典定理,并强调了该理论的许多有用应用中的少数几个。

第八章建立了以连续时间参数为指标的右连续随机过程的研究框架,引入了高斯过程族,并严格构造了布朗运动为连续样本路径和零均值平稳独立增量的高斯过程。

第九章将我们先前对鞅和强马尔可夫过程的处理扩展到连续时间的设定,强调了右连续滤波的作用。然后在布朗运动和马尔可夫跳跃过程的背景下说明了这类过程的数学结构。

在此基础上,在第十章中,我们利用不变性原理重新构造了布朗运动作为某些重新标定的随机游动的极限。进一步研究了其样本路径的丰富性质以及布朗运动在clt和迭代对数定律(简称lil)中的许多应用。

https://statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf

成为VIP会员查看完整内容
0
73

概率论起源于17世纪的法国,当时两位伟大的法国数学家,布莱斯·帕斯卡和皮埃尔·德·费马,对两个来自机会博弈的问题进行了通信。帕斯卡和费马解决的问题继续影响着惠更斯、伯努利和DeMoivre等早期研究者建立数学概率论。今天,概率论是一个建立良好的数学分支,应用于从音乐到物理的学术活动的每一个领域,也应用于日常经验,从天气预报到预测新的医疗方法的风险。

本文是为数学、物理和社会科学、工程和计算机科学的二、三、四年级学生开设的概率论入门课程而设计的。它提出了一个彻底的处理概率的想法和技术为一个牢固的理解的主题必要。文本可以用于各种课程长度、水平和重点领域。

在标准的一学期课程中,离散概率和连续概率都包括在内,学生必须先修两个学期的微积分,包括多重积分的介绍。第11章包含了关于马尔可夫链的材料,为了涵盖这一章,一些矩阵理论的知识是必要的。

文本也可以用于离散概率课程。材料被组织在这样一种方式,离散和连续的概率讨论是在一个独立的,但平行的方式,呈现。这种组织驱散了对概率过于严格或正式的观点,并提供了一些强大的教学价值,因为离散的讨论有时可以激发更抽象的连续的概率讨论。在离散概率课程中,学生应该先修一学期的微积分。

为了充分利用文中的计算材料和例子,假设或必要的计算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica语言编写的。

成为VIP会员查看完整内容
0
66

《概率论:理论与实例》,包含优秀的例子与有趣(又富有挑战性)的习题很好地协助了理论的延伸。这些例子也许并没有被完全应用于实际,但却清楚地解释了前面的理论。而且,是的,仅靠前面的理论与例题不足以解决所有习题。你需要想更多,解决问题也许需要用到之前的习题——但这不正是真正的数学研究的样子吗?你永远不会知道从哪能找到答案。

https://www.cambridge.org/hk/academic/subjects/statistics-probability/probability-theory-and-stochastic-processes/probability-theory-and-examples-5th-edition?format=HB&isbn=9781108473682

成为VIP会员查看完整内容
0
68

前言 在这本书中,我们从图形模型的基础知识、它们的类型、为什么使用它们以及它们解决了什么类型的问题开始。然后我们在图形模型的上下文中探索子问题,例如它们的表示、构建它们、学习它们的结构和参数,以及使用它们回答我们的推理查询。

这本书试图提供足够的理论信息,然后使用代码示例窥视幕后,以了解一些算法是如何实现的。代码示例还提供了一个方便的模板,用于构建图形模型和回答概率查询。在文献中描述的许多种类的图形模型中,这本书主要关注离散贝叶斯网络,偶尔也有来自马尔科夫网络的例子。

内容概述

  • 第一章:概率论,涵盖了理解图形模型所需的概率论的概念。

  • 第2章:有向图形模型,提供了关于贝叶斯网络的信息,他们的属性相关的独立性,条件独立性,和D分离。本章使用代码片段加载贝叶斯网络并理解其独立性。

  • 第三章:无向图模型,介绍了马尔可夫网络的性质,马尔可夫网络与贝叶斯网络的区别,以及马尔可夫网络的独立性。

  • 第四章:结构学习,涵盖了使用数据集来推断贝叶斯网络结构的多种方法。我们还学习了结构学习的计算复杂性,并在本章使用代码片段来学习抽样数据集中给出的结构。

  • 第5章:参数学习,介绍了参数学习的最大似然法和贝叶斯方法。

  • 第6章:使用图形模型的精确推理,解释了精确推理的变量消除算法,并探索了使用相同算法回答我们的推理查询的代码片段。

  • 第7章:近似推理方法,探讨了网络太大而无法进行精确推理的近似推理。我们还将通过在马尔科夫网络上使用循环信念传播运行近似推论的代码样本。

目录

成为VIP会员查看完整内容
0
78

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
145

本文采用了一种独特的机器学习方法,它包含了对进行研究、开发产品、修补和玩耍所必需的所有基本概念的全新的、直观的、但又严谨的描述。通过优先考虑几何直观,算法思维,和实际应用的学科,包括计算机视觉,自然语言处理,经济学,神经科学,推荐系统,物理,和生物学,这篇文章为读者提供了一个清晰的理解基础材料以及实际工具需要解决现实世界的问题。通过深入的Python和基于MATLAB/ octave的计算练习,以及对前沿数值优化技术的完整处理,这是学生的基本资源,也是从事机器学习、计算机科学、电子工程、信号处理和数值优化的研究人员和实践者的理想参考。其他资源包括补充讨论主题、代码演示和练习,可以在官方教材网站mlrefined.com上找到。

  • 建立在清晰的几何直觉上的讲述
  • 最先进的数值优化技术的独特处理
  • 逻辑回归和支持向量机的融合介绍
  • 将功能设计和学习作为主要主题
  • 通过函数逼近的视角,先进主题的无与伦比的呈现
  • 深度神经网络和核方法的细化描述
成为VIP会员查看完整内容
0
122
小贴士
相关主题
相关VIP内容
专知会员服务
46+阅读 · 8月4日
专知会员服务
38+阅读 · 5月11日
专知会员服务
108+阅读 · 3月22日
专知会员服务
73+阅读 · 2020年12月3日
专知会员服务
66+阅读 · 2020年11月25日
专知会员服务
68+阅读 · 2020年11月13日
【干货书】用Python构建概率图模型,173页pdf
专知会员服务
78+阅读 · 2020年8月23日
专知会员服务
145+阅读 · 2020年6月3日
相关论文
Hao Chen
0+阅读 · 9月17日
Guandong Xu,Tri Dung Duong,Qian Li,Shaowu Liu,Xianzhi Wang
0+阅读 · 9月17日
Byungseok Roh,Wuhyun Shin,Ildoo Kim,Sungwoong Kim
12+阅读 · 3月10日
Xinyu Ma,Jiafeng Guo,Ruqing Zhang,Yixing Fan,Xiang Ji,Xueqi Cheng
10+阅读 · 2020年10月20日
Self-labelling via simultaneous clustering and representation learning
Yuki Markus Asano,Christian Rupprecht,Andrea Vedaldi
3+阅读 · 2019年11月26日
Aaron van den Oord,Yazhe Li,Oriol Vinyals
5+阅读 · 2019年1月22日
Linfeng Song,Zhiguo Wang,Mo Yu,Yue Zhang,Radu Florian,Daniel Gildea
6+阅读 · 2018年9月6日
Alexander Jung
9+阅读 · 2018年8月19日
Top