Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving vehicles. In these applications, failure of perception systems may put human life at risk, and a broad adoption of these technologies requires the development of methodologies to guarantee and monitor safe operation. Despite the paramount importance of perception systems, currently there is no formal approach for system-level monitoring. In this work, we propose a mathematical model for runtime monitoring and fault detection and identification in perception systems. Towards this goal, we draw connections with the literature on diagnosability in multiprocessor systems, and generalize it to account for modules with heterogeneous outputs that interact over time. The resulting temporal diagnostic graphs (i) provide a framework to reason over the consistency of perception outputs -- across modules and over time -- thus enabling fault detection, (ii) allow us to establish formal guarantees on the maximum number of faults that can be uniquely identified in a given perception system, and (iii) enable the design of efficient algorithms for fault identification. We demonstrate our monitoring system, dubbed PerSyS, in realistic simulations using the LGSVL self-driving simulator and the Apollo Auto autonomy software stack, and show that PerSyS is able to detect failures in challenging scenarios (including scenarios that have caused self-driving car accidents in recent years), and is able to correctly identify faults while entailing a minimal computation overhead (< 5 ms on a single-core CPU).

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/

Model-based geostatistical design involves the selection of locations to collect data to minimise an expected loss function over a set of all possible locations. The loss function is specified to reflect the aim of data collection, which, for geostatistical studies, could be to minimise the prediction uncertainty at unobserved locations. In this paper, we propose a new approach to design such studies via a loss function derived through considering the entropy about the model predictions and the parameters of the model. The approach also includes a multivariate extension to generalised linear spatial models, and thus can be used to design experiments with more than one response. Unfortunately, evaluating our proposed loss function is computationally expensive so we provide an approximation such that our approach can be adopted to design realistically sized geostatistical studies. This is demonstrated through a simulated study and through designing an air quality monitoring program in Queensland, Australia. The results show that our designs remain highly efficient in achieving each experimental objective individually, providing an ideal compromise between the two objectives. Accordingly, we advocate that our approach could be adopted more generally in model-based geostatistical design.

0
0
下载
预览

Due to the diffusion of IoT, modern software systems are often thought to control and coordinate smart devices in order to manage assets and resources, and to guarantee efficient behaviours. For this class of systems, which interact extensively with humans and with their environment, it is thus crucial to guarantee their correct behaviour in order to avoid unexpected and possibly dangerous situations. In this paper we will present a framework that allows us to measure the robustness of systems. This is the ability of a program to tolerate changes in the environmental conditions and preserving the original behaviour. In the proposed framework, the interaction of a program with its environment is represented as a sequence of random variables describing how both evolve in time. For this reason, the considered measures will be defined among probability distributions of observed data. The proposed framework will be then used to define the notions of adaptability and reliability. The former indicates the ability of a program to absorb perturbation on environmental conditions after a given amount of time. The latter expresses the ability of a program to maintain its intended behaviour (up-to some reasonable tolerance) despite the presence of perturbations in the environment. Moreover, an algorithm, based on statistical inference, it proposed to evaluate the proposed metric and the aforementioned properties. Throughout the paper, two case studies are used to the describe and evaluate the proposed approach.

0
0
下载
预览

This paper describes the design and control of a support and recovery system for use with planar legged robots. The system operates in three modes. First, it can be operated in a fully transparent mode where no forces are applied to the robot. In this mode, the system follows the robot closely to be able to quickly catch the robot if needed. Second, it can provide a vertical supportive force to assist a robot during operation. Third, it can catch the robot and pull it away from the ground after a failure to avoid falls and the associated damages. In this mode, the system automatically resets the robot after a trial allowing for multiple consecutive trials to be run without manual intervention. The supportive forces are applied to the robot through an actuated cable and pulley system that uses series elastic actuation with a unidirectional spring to enable truly transparent operation. The nonlinear nature of this system necessitates careful design of controllers to ensure predictable, safe behaviors. In this paper we introduce the mechatronic design of the recovery system, develop suitable controllers, and evaluate the system's performance on the bipedal robot RAMone.

0
0
下载
预览

Data protection is a severe constraint in the heterogeneous IoT era. This article presents a Hardware-Software Co-Simulation of AES-128 bit encryption and decryption for IoT Edge devices using the Xilinx System Generator (XSG). VHDL implementation of AES-128 bit algorithm is done with ECB and CTR mode using loop unrolled and FSM-based architecture. It is found that AES-CTR and FSM architecture performance is better than loop unrolled architecture with lesser power consumption and area. For performing the Hardware-Software Co-Simulation on Zedboard and Kintex-Ultra scale KCU105 Evaluation Platform, Xilinx Vivado 2016.2 and MATLAB 2015b is used. Hardware emulation is done for grey images successfully. To give a practical example of the usage of proposed framework, we have applied it for Biomedical Images (CTScan Image) as a case study. Security analysis in terms of the histogram, correlation, information entropy analysis, and keyspace analysis using exhaustive search and key sensitivity tests is also done to encrypt and decrypt images successfully.

0
0
下载
预览

A growing demand is witnessed in both industry and academia for employing Deep Learning (DL) in various domains to solve real-world problems. Deep Reinforcement Learning (DRL) is the application of DL in the domain of Reinforcement Learning (RL). Like any software systems, DRL applications can fail because of faults in their programs. In this paper, we present the first attempt to categorize faults occurring in DRL programs. We manually analyzed 761 artifacts of DRL programs (from Stack Overflow posts and GitHub issues) developed using well-known DRL frameworks (OpenAI Gym, Dopamine, Keras-rl, Tensorforce) and identified faults reported by developers/users. We labeled and taxonomized the identified faults through several rounds of discussions. The resulting taxonomy is validated using an online survey with 19 developers/researchers. To allow for the automatic detection of faults in DRL programs, we have defined a meta-model of DRL programs and developed DRLinter, a model-based fault detection approach that leverages static analysis and graph transformations. The execution flow of DRLinter consists in parsing a DRL program to generate a model conforming to our meta-model and applying detection rules on the model to identify faults occurrences. The effectiveness of DRLinter is evaluated using 15 synthetic DRLprograms in which we injected faults observed in the analyzed artifacts of the taxonomy. The results show that DRLinter can successfully detect faults in all synthetic faulty programs.

0
0
下载
预览

Ensuring the quality of automated driving systems is a major challenge the automotive industry is facing. In this context, quality defines the degree to which an object meets expectations and requirements. Especially, automated vehicles at SAE level 4 and 5 will be expected to operate safely in various contexts and complex situations without misconduct. Thus, a systematic approach is needed to show their safe operation. A way to address this challenge is simulation-based testing as pure physical testing is not feasible. During simulation-based testing, the data used to evaluate the actual quality of an automated driving system are generated using a simulation. However, to rely on these simulation data, the overall simulation, which also includes its simulation models, must provide a certain quality level. This quality level depends on the intended purpose for which the generated simulation data should be used. Therefore, three categories of quality can be considered: quality of the automated driving system and simulation quality, consisting of simulation model quality and scenario quality. Hence, quality must be determined and evaluated in various process steps in developing and testing automated driving systems, the overall simulation, and the simulation models used for the simulation. In this paper, we propose a taxonomy to serve a better understanding of the concept of quality in the development and testing process to have a clear separation and insight where further testing is needed -- both in terms of automated driving systems and simulation, including their simulation models and scenarios used for testing.

0
0
下载
预览

Cyber-Physical Systems (CPS) consist of inter-wined computational (cyber) and physical components interacting through sensors and/or actuators. Computational elements are networked at every scale and can communicate with each other and with humans. Nodes can join and leave the network at any time or they can move to different spatial locations. In this scenario, monitoring spatial and temporal properties plays a key role in the understanding of how complex behaviors can emerge from local and dynamic interactions. We revisit here the Spatio-Temporal Reach and Escape Logic (STREL), a logic-based formal language designed to express and monitor spatio-temporal requirements over the execution of mobile and spatially distributed CPS. STREL considers the physical space in which CPS entities (nodes of the graph) are arranged as a weighted graph representing their dynamic topological configuration. Both nodes and edges include attributes modeling physical and logical quantities that can evolve over time. STREL combines the Signal Temporal Logic with two spatial modalities reach and escape that operate over the weighted graph. From these basic operators, we can derive other important spatial modalities such as everywhere, somewhere and surround. We propose both qualitative and quantitative semantics based on constraint semiring algebraic structure. We provide an offline monitoring algorithm for STREL and we show the feasibility of our approach with the application to two case studies: monitoring spatio-temporal requirements over a simulated mobile ad-hoc sensor network and a simulated epidemic spreading model for COVID19.

0
0
下载
预览

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: https://github.com/kemaloksuz/ObjectDetectionImbalance .

0
22
下载
预览

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

0
19
下载
预览

This paper identifies the factors that have an impact on mobile recommender systems. Recommender systems have become a technology that has been widely used by various online applications in situations where there is an information overload problem. Numerous applications such as e-Commerce, video platforms and social networks provide personalized recommendations to their users and this has improved the user experience and vendor revenues. The development of recommender systems has been focused mostly on the proposal of new algorithms that provide more accurate recommendations. However, the use of mobile devices and the rapid growth of the internet and networking infrastructure has brought the necessity of using mobile recommender systems. The links between web and mobile recommender systems are described along with how the recommendations in mobile environments can be improved. This work is focused on identifying the links between web and mobile recommender systems and to provide solid future directions that aim to lead in a more integrated mobile recommendation domain.

0
7
下载
预览
小贴士
相关论文
Valentina Castiglioni,Michele Loreti,Simone Tini
0+阅读 · 11月30日
Kevin Green,Nils Smit-Anseeuw,Rodney Gleason,C. David Remy
0+阅读 · 11月29日
Amin Nikanjam,Mohammad Mehdi Morovati,Foutse Khomh,Houssem Ben Braiek
0+阅读 · 11月28日
Barbara Schütt,Markus Steimle,Birte Kramer,Danny Behnecke,Eric Sax
0+阅读 · 11月25日
L. Nenzi,E. Bartocci,L. Bortolussi,M. Loreti
0+阅读 · 11月25日
Kemal Oksuz,Baris Can Cam,Sinan Kalkan,Emre Akbas
22+阅读 · 2020年3月11日
Fang Liu,Guoming Tang,Youhuizi Li,Zhiping Cai,Xingzhou Zhang,Tongqing Zhou
19+阅读 · 2019年11月7日
Elias Pimenidis,Nikolaos Polatidis,Haralambos Mouratidis
7+阅读 · 2018年5月6日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
4+阅读 · 2018年12月17日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
15+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
17+阅读 · 2017年12月17日
Top