题目:A Neural Conversation Generation Model via Equivalent Shared Memory Investigation

简介:对话生成作为自然语言生成 (NLG) 中的一项具有挑战性的任务,在过去几年中越来越受到关注。最近的一些工作采用了序列到序列结构以及外部知识,成功地提高了生成对话的质量。然而,构建大规模的外部知识不仅耗费大量人力物力,并且模型的领域适用性受到限制。在本篇文章中,我们将相似对话作为一种知识来提高对话生成的性能。以客户服务和法庭辩论领域为例,从相似的对话实例中提取必要的实体,短语,句子及其相关逻辑关系。这些信息可以为改善对话生成提供有用的信号。在本文中,我们提出了一种新的阅读和记忆框架,称为深度阅读记忆网络(DRMN),它能够记住相似对话的有用信息,以改善话语生成。我们将我们的模型应用于司法领域和电子商务领域的两个大规模对话数据集。实验证明,所提出的模型取得了最好的效果。

https://www.zhuanzhi.ai/paper/0399571c887d82ff2eeca6a1452dad47

成为VIP会员查看完整内容
10

相关内容

【CIKM2021】用领域知识增强预训练语言模型的问题回答
专知会员服务
17+阅读 · 2021年11月18日
专知会员服务
9+阅读 · 2021年9月22日
专知会员服务
17+阅读 · 2021年9月18日
【WSDM2021】弱监督下的分层元数据感知文档分类
专知会员服务
11+阅读 · 2020年11月16日
LaMDA: Language Models for Dialog Applications
Arxiv
9+阅读 · 2022年1月20日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
4+阅读 · 2019年2月18日
VIP会员
相关VIP内容
【CIKM2021】用领域知识增强预训练语言模型的问题回答
专知会员服务
17+阅读 · 2021年11月18日
专知会员服务
9+阅读 · 2021年9月22日
专知会员服务
17+阅读 · 2021年9月18日
【WSDM2021】弱监督下的分层元数据感知文档分类
专知会员服务
11+阅读 · 2020年11月16日
相关论文
LaMDA: Language Models for Dialog Applications
Arxiv
9+阅读 · 2022年1月20日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
4+阅读 · 2019年2月18日
微信扫码咨询专知VIP会员