学习使用Python分析数据和预测结果的更简单和更有效的方法

Python机器学习教程展示了通过关注两个核心机器学习算法家族来成功分析数据,本书能够提供工作机制的完整描述,以及使用特定的、可破解的代码来说明机制的示例。算法用简单的术语解释,没有复杂的数学,并使用Python应用,指导算法选择,数据准备,并在实践中使用训练过的模型。您将学习一套核心的Python编程技术,各种构建预测模型的方法,以及如何测量每个模型的性能,以确保使用正确的模型。关于线性回归和集成方法的章节深入研究了每种算法,你可以使用书中的示例代码来开发你自己的数据分析解决方案。

机器学习算法是数据分析和可视化的核心。在过去,这些方法需要深厚的数学和统计学背景,通常需要结合专门的R编程语言。这本书演示了机器学习可以如何实现使用更广泛的使用和可访问的Python编程语言。

使用线性和集成算法族预测结果

建立可以解决一系列简单和复杂问题的预测模型

使用Python应用核心机器学习算法

直接使用示例代码构建自定义解决方案

机器学习不需要复杂和高度专业化。Python使用了更简单、有效和经过良好测试的方法,使这项技术更容易为更广泛的受众所接受。Python中的机器学习将向您展示如何做到这一点,而不需要广泛的数学或统计背景。

成为VIP会员查看完整内容
0
131

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。

这本书是为任何想学习如何开发机器学习系统的人准备的。我们将从理论和实践两方面涵盖关于机器学习算法的最重要概念,并将使用Python编程语言中的Scikit-learn库实现许多机器学习算法。在第一章中,您将学习机器学习最重要的概念,在下一章中,您将主要学习分类。在最后一章中,你将学习如何训练你的模型。我假定你已经了解了编程的基础知识。

成为VIP会员查看完整内容
0
107

获得金融、医疗保健和零售领域的机器学习实用技能。这本书通过提供这些领域的案例研究,使用了动手的方法:你将看到如何使用机器学习作为商业增强工具的例子。作为一名领域专家,您不仅会发现机器学习在金融、医疗保健和零售领域是如何应用的,而且还会通过实施机器学习的实际案例研究进行工作。

使用Python的机器学习应用程序分为三个部分,分别针对每个领域(医疗保健、金融和零售)。每一节都以机器学习和该领域的关键技术进展的概述开始。然后,您将通过案例研究了解更多关于组织如何改变其所选择市场的游戏规则。这本书有实际的案例研究与Python代码和领域特定的创新想法赚钱的机器学习。

你会学到什么

  • 发现应用的机器学习过程和原理
  • 在医疗保健、金融和零售领域实现机器学习
  • 避免应用机器学习的陷阱
  • 在三个主题领域构建Python机器学习示例

这本书是给谁的

  • 数据科学家和机器学习专家。
成为VIP会员查看完整内容
0
87

通过使用Python开发用例,全面了解监督学习算法您将学习监督学习概念、Python代码、数据集、最佳实践、常见问题和缺陷的解决方案,以及实现结构化、文本和图像数据集算法的实践知识。

你将从介绍机器学习开始,强调监督学习、半监督学习和非监督学习之间的区别。在接下来的章节中,你将学习回归和分类问题,它们背后的数学,像线性回归、逻辑回归、决策树、KNN、朴素贝叶斯等算法,以及像随机森林、支持向量机、梯度增强和神经网络等高级算法。提供了所有算法的Python实现。最后,您将得到一个端到端模型开发流程,包括模型的部署和维护。在阅读了Python的监督学习之后,你将会对监督学习和它的实际实现有一个广泛的理解,并且能够以一种创新的方式运行代码和扩展它。

你将学习:

  • 回顾使用Python进行监督学习的基本构建块和概念
  • 为结构化数据以及文本和图像开发监督学习解决方案
  • 解决围绕过拟合、特征工程、数据清理和建立最佳拟合模型的交叉验证的问题
  • 理解从业务问题定义到模型部署和模型维护的端到端模型周期
  • 在使用Python创建监督学习模型时,避免常见的缺陷并遵循最佳实践

这本书是给谁的

  • 对监督学习的最佳实践和标准感兴趣,并使用分类算法和回归技术来开发预测模型的数据科学家或数据分析师。

https://www.apress.com/gp/book/9781484261552

成为VIP会员查看完整内容
0
44

如果您是用Python编程的新手,并且正在寻找可靠的介绍,那么这本书就是为您准备的。由计算机科学教师开发,在“为绝对初学者”系列丛书通过简单的游戏创造教授编程的原则。您将获得实际的Python编程应用程序所需的技能,并将了解如何在真实场景中使用这些技能。在整个章节中,你会发现一些代码示例来说明所提出的概念。在每一章的结尾,你会发现一个完整的游戏,展示了这一章的关键思想,一章的总结,以及一系列的挑战来测试你的新知识。当你读完这本书的时候,你将非常精通Python,并且能够将你所学到的基本编程原理应用到你要处理的下一种编程语言。

成为VIP会员查看完整内容
0
125

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
107

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
120

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
168

机器学习已经成为许多商业应用和研究项目中不可或缺的一部分,但这一领域并不仅限于拥有广泛研究团队的大公司。如果您使用Python,即使是初学者,这本书也会教你构建自己的机器学习解决方案的实用方法。今天,有了所有可用的数据,机器学习应用程序只受限于你的想象力。

您将学习使用Python和scikit-learn库创建成功的机器学习应用程序所需的步骤。两位作者安德烈亚斯•穆勒(Andreas Muller)和萨拉•圭多(Sarah Guido)关注的是使用机器学习算法的实践层面,而不是背后的数学。熟悉NumPy和matplotlib库将有助于您从本书获得更多信息。

通过这本书,你会学到 :

  • 机器学习的基本概念和应用
  • 广泛应用的机器学习算法的优缺点
  • 如何表示机器学习处理过的数据,包括关注哪些数据方面
  • 先进的模型评估和参数调整方法
  • 用于链接模型和封装工作流的管道概念
  • 处理文本数据的方法,包括特定于文本的处理技术
  • 提高机器学习和数据科学技能的建议
成为VIP会员查看完整内容
0
100

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
154

概率图模型是机器学习中的一种技术,它使用图论的概念来简明地表示和最佳地预测数据问题中的值。

图模型为我们提供了在数据中发现复杂模式的技术,广泛应用于语音识别、信息提取、图像分割和基因调控网络建模等领域。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一整章是关于朴素贝叶斯模型和隐马尔可夫模型的。这些模型已经通过实际例子进行了详细的讨论。

你会学到什么

  • 掌握概率论和图论的基本知识
  • 使用马尔可夫网络
  • 实现贝叶斯网络
  • 图模型中的精确推理技术,如变量消除算法
  • 了解图模型中的近似推理技术,如消息传递算法

图模型中的示例算法 通过真实的例子来掌握朴素贝叶斯的细节 使用Python中的各种库部署PGMs 获得隐马尔可夫模型的工作细节与现实世界的例子

详细 概率图模型是机器学习中的一种技术,它使用图论的概念来简洁地表示和最佳地预测数据问题中的值。在现实问题中,往往很难选择合适的图模型和合适的推理算法,这对计算时间和精度有很大的影响。因此,了解这些算法的工作细节是至关重要的。

这本书从概率论和图论的基础开始,然后继续讨论各种模型和推理算法。所有不同类型的模型都将与代码示例一起讨论,以创建和修改它们,并在它们上运行不同的推理算法。有一个完整的章节专门讨论最广泛使用的网络朴素贝叶斯模型和隐马尔可夫模型(HMMs)。这些模型已经通过实际例子进行了详细的讨论。

风格和方法 一个易于遵循的指南,帮助您理解概率图模型使用简单的例子和大量的代码例子,重点放在更广泛使用的模型。

成为VIP会员查看完整内容
0
148
小贴士
相关VIP内容
专知会员服务
87+阅读 · 1月1日
专知会员服务
125+阅读 · 2020年8月14日
专知会员服务
107+阅读 · 2020年7月29日
专知会员服务
168+阅读 · 2020年6月10日
专知会员服务
100+阅读 · 2020年6月4日
专知会员服务
154+阅读 · 2020年6月3日
相关资讯
植树节,送 25 本AI & NLP & Python相关书籍
AINLP
11+阅读 · 2019年3月12日
Python 神经网络编程
人工智能头条
3+阅读 · 2019年2月27日
用Python实现流行机器学习算法
Python程序员
10+阅读 · 2018年12月31日
Python & 机器学习之项目实践 | 赠书
人工智能头条
10+阅读 · 2017年12月26日
Python 书单:从入门到……
Linux中国
14+阅读 · 2017年8月6日
相关论文
Julien Siebert,Janek Groß,Christof Schroth
0+阅读 · 4月15日
Alexander Litvinenko,Ronald Kriemann,Vladimir Berikov
0+阅读 · 4月14日
Maciej Skorski
0+阅读 · 4月14日
Babak Maboudi Afkham,Julianne Chung,Matthias Chung
0+阅读 · 4月14日
Jingkun Gao,Xiaomin Song,Qingsong Wen,Pichao Wang,Liang Sun,Huan Xu
3+阅读 · 2020年2月21日
Meta-Learning to Cluster
Yibo Jiang,Nakul Verma
14+阅读 · 2019年10月30日
Joseph Y. Halpern
5+阅读 · 2019年9月30日
1D Convolutional Neural Networks and Applications: A Survey
Serkan Kiranyaz,Onur Avci,Osama Abdeljaber,Turker Ince,Moncef Gabbouj,Daniel J. Inman
4+阅读 · 2019年5月9日
Ilias Diakonikolas,Gautam Kamath,Daniel M. Kane,Jerry Li,Ankur Moitra,Alistair Stewart
3+阅读 · 2017年12月14日
Top