“一图胜千言”

为图像处理课程设计(IP)旨在研究生和大四本科生,在任何领域的工程,这本书从第一章概述如何安装摄像头成像雷达的核磁共振成像和猫形态图像,然后继续覆盖广泛的图像处理主题。IP主题包括:图像插值、放大、缩略图和锐化、边缘检测、噪声滤波、模糊图像的去模糊、监督和非监督学习、图像分割等。

成为VIP会员查看完整内容
0
50

相关内容

图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。

《数据科学设计手册》提供了实用的见解,突出了分析数据中真正重要的东西,并提供了如何使用这些核心概念的直观理解。这本书没有强调任何特定的编程语言或数据分析工具套件,而是专注于重要设计原则的高级讨论。这个易于阅读的文本理想地服务于本科生和早期研究生的需要,开始“数据科学入门”课程。它揭示了这门学科是如何以其独特的分量和特点,处于统计学、计算机科学和机器学习的交叉领域。在这些和相关领域的从业者会发现这本书完美的自学以及。

《数据科学设计手册》是数据科学的介绍,重点介绍建立收集、分析和解释数据的系统所需的技能和原则。作为一门学科,数据科学位于统计学、计算机科学和机器学习的交汇处,但它正在构建自己独特的分量和特征。

这本书涵盖了足够的材料在本科或早期研究生水平的“数据科学入门”课程。在这里可以找到教学这门课程的全套讲课幻灯片,以及项目和作业的数据资源,以及在线视频讲座。

成为VIP会员查看完整内容
0
47

C++是一种功能强大、高度灵活、适应性强的编程语言,它允许软件工程师快速有效地组织和处理信息。但是,即使您已经掌握了C编程语言,也很难掌握这种高级语言。实用c++编程的第二版是一个完整的介绍c++语言的程序员谁正在学习c++。这第二版反映了c++标准的最新变化,它采取了一种实用的脚踏实地的方法,着重强调了如何设计干净、优雅的代码。简而言之,切中要点的章节,涵盖了编程的所有方面,包括风格、软件工程、编程设计、面向对象设计和调试。它还涵盖了常见的错误以及如何发现(和避免)它们。章节结束练习帮助你确保你已经掌握了材料。实用c++编程彻底涵盖:

http://www.oualline.com/books.free/teach/intro.html

C++语法 编码标准和风格 对象类的创建和使用 模板 调试和优化 使用c++预处理器

成为VIP会员查看完整内容
0
37

学习使用Python分析数据和预测结果的更简单和更有效的方法

Python机器学习教程展示了通过关注两个核心机器学习算法家族来成功分析数据,本书能够提供工作机制的完整描述,以及使用特定的、可破解的代码来说明机制的示例。算法用简单的术语解释,没有复杂的数学,并使用Python应用,指导算法选择,数据准备,并在实践中使用训练过的模型。您将学习一套核心的Python编程技术,各种构建预测模型的方法,以及如何测量每个模型的性能,以确保使用正确的模型。关于线性回归和集成方法的章节深入研究了每种算法,你可以使用书中的示例代码来开发你自己的数据分析解决方案。

机器学习算法是数据分析和可视化的核心。在过去,这些方法需要深厚的数学和统计学背景,通常需要结合专门的R编程语言。这本书演示了机器学习可以如何实现使用更广泛的使用和可访问的Python编程语言。

使用线性和集成算法族预测结果

建立可以解决一系列简单和复杂问题的预测模型

使用Python应用核心机器学习算法

直接使用示例代码构建自定义解决方案

机器学习不需要复杂和高度专业化。Python使用了更简单、有效和经过良好测试的方法,使这项技术更容易为更广泛的受众所接受。Python中的机器学习将向您展示如何做到这一点,而不需要广泛的数学或统计背景。

成为VIP会员查看完整内容
0
123

机器学习简明指南,不可错过!

A Machine Learning Primer

亚马逊研究科学家Mihail Eric关于机器学习实践重要经验。包括监督学习、机器学习实践、无监督学习以及深度学习。具体为:

监督学习

  • 线性回归
  • 逻辑回归
  • 朴素贝叶斯
  • 支持向量机
  • 决策树
  • K-近邻

机器学习实践

  • 偏差-方差权衡
  • 如何选择模型
  • 如何选择特征
  • 正则化你的模型
  • 模型集成
  • 评价指标

无监督学习

  • 市场篮子分析
  • K均值聚类
  • 主成分分析

深度学习

  • 前向神经网络
  • 神经网络实践
  • 卷积神经网络
  • 循环神经网络
成为VIP会员查看完整内容
0
59

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
105

《图像处理手册》一直被评为计算机图像处理的最佳整体介绍,涵盖二维(2D)和三维(3D)成像技术、图像打印和存储方法、图像处理算法、图像和特征测量、定量图像测量分析等等。

  • 比以前的版本有更多的计算密集型算法
  • 提供更好的组织,更多的定量结果,和最新发展的新材料
  • 包括在3D成像和在统计分析上彻底修改的一章完全重写的章节
  • 包含超过1700个参考文献的理论,方法,和应用在广泛的学科
  • 呈现了500多个全新的人物和图像,其中超过三分之二是彩色的

《图像处理手册》第七版提供一个可接近的和最新的图像处理的处理,提供广泛的覆盖和算法的比较,方法,和结果。

成为VIP会员查看完整内容
0
108

本书概述了现代数据科学重要的数学和数值基础。特别是,它涵盖了信号和图像处理(傅立叶、小波及其在去噪和压缩方面的应用)、成像科学(反问题、稀疏性、压缩感知)和机器学习(线性回归、逻辑分类、深度学习)的基础知识。重点是对方法学工具(特别是线性算子、非线性逼近、凸优化、最优传输)的数学上合理的阐述,以及如何将它们映射到高效的计算算法。

https://mathematical-tours.github.io/book/

它应该作为数据科学的数字导览的数学伴侣,它展示了Matlab/Python/Julia/R对这里所涵盖的所有概念的详细实现。

成为VIP会员查看完整内容
0
217

【导读】计算机视觉是一门对图像中信息进行自动提取的学科。信息的内容相当广泛,包括三维模型、照相机位置、目标检测与识别,以及图像内容的分组与搜索等。本书中,我们使用广义的计算机视觉概念,包括图像扭曲、降噪和增强现实等。计算机视觉有时试图模拟人类视觉,有时使用数据和统计方法,而有时几何是解决问题的关键。如果你想对计算机视觉的基本理论和算法有一个基本的了解,这个动手的介绍是理想的起点。您将学习对象识别、3D重建、立体成像、增强现实和其他计算机视觉应用程序的技术,并学习用Python编写的示例。

前言

今天,图像和视频无处不在,在线照片分享网站和社交网络上的图像有数十亿之多。几乎对于任意可能的查询图像,搜索引擎都会给用户返回检索的图像。实际上,几乎所有手机和计算机都有内置的摄像头,所以在人们的设备中,有几 G 的图像和视频是一件很寻常的事。

计算机视觉就是用计算机编程,并设计算法来理解在这些图像中有什么。计算机视觉的有力应用有图像搜索、机器人导航、医学图像分析、照片管理等。

本书旨在为计算机视觉实战提供一个简单的切入点,让学生、研究者和爱好者充分理解其基础理论和算法。本书中的编程语言是 Python,Python 自带了很多可以免费获取的强大而便捷的图像处理、数学计算和数据挖掘模块,可以免费获取。

写作本书的时候,我遵循了以下原则。

  • 鼓励探究式学习,让读者在阅读本书的时候,在计算机上跟着书中示例进行练习。

  • 推广和使用免费且开源的软件,设立较低的学习门槛。显然,我们选择了 Python。

  • 保持内容完整性和独立性。本书没有介绍计算机视觉的全部内容,而是完整呈现并解释所有代码。你应该能够重现这些示例,并可以直接在它们之上构建其他应用。

  • 内容追求广泛而非详细,且相对于理论更注重鼓舞和激励。

总之,如果你对计算机视觉编程感兴趣,希望它能给你带来启发。

各章概览

  • 第 1 章“基本的图像操作和处理”介绍用来处理图像的基本工具及本书用到的核心 Python 模块,同时涵盖了很多贯穿全书的基础示例。

  • 第 2 章“局部图像描述子”讲解检测图像兴趣点的方法,以及怎样使用它们在图像间寻找相应点和区域。

  • 第 3 章“图像到图像的映射”描述图像间基本的变换及其计算方法。涵盖从图像扭曲到创建全景图像的示例。

  • 第 4 章“照相机模型与增强现实”介绍如何对照相机建模、生成从三维空间到图像特征的图像投影,并估计照相机视点。

  • 第 5 章“多视图几何”讲解如何对具有相同场景、多视图几何基本面的图像进行处理,以及怎样从图像计算三维重建。

  • 第 6 章“图像聚类”介绍一些聚类方法,并展示如何基于相似性或内容对图像进行分组和组织。

  • 第 7 章“图像搜索”展示如何建立有效的图像检索技术,以便能够存储图像的表示,并基于图像的视觉内容搜索图像。

  • 第 8 章“图像内容分类”描述了图像内容分类算法,以及怎样使用它们识别图像中的物体。

  • 第 9 章“图像分割”介绍了通过聚类、用户交互或图像模型,将图像分割成有意义区域的不同技术。

  • 第 10 章“OpenCV”展示怎样使用常用的 OpenCV 计算机视觉库 Python 接口,以及如何处理视频及摄像头的输入。

成为VIP会员查看完整内容
0
95

由于特征工程通常是特定于数据类型且依赖于应用程序的,本书包含专门介绍主要数据类型的特征工程的章节,如文本数据、图像数据、序列数据、时间序列数据、图形数据、流数据、软件工程数据、Twitter 数据和社交媒体数据。这些章节介绍了生成经过反复测试、手工制作的特定于域的功能以及自动通用功能生成方法(如 Word2Vec)的方法。

本书目录:

  1. 预览概述
  2. 文本数据特征工程 
  3. 视觉数据特征提取学习
  4. 基于特征的时序分析
  5. 数据特征流工程
  6. 序列特征生成与特征工程
  7. 图与网络特征生成
  8. 特征选择与评估
  9. 监督学习中的自动特征工程
  10. 基于模式的特征生成
  11. 深度学习特征表示
  12. 用于社交机器人检测的特征工程
  13. 用于软件分析的特征生成与工程
  14. Twitter应用特征工程

本书还包含有关特征选择、基于特征转换的自动方法、使用深度学习方法生成功能以及使用频繁和对比度模式生成特征的章节。有几章是关于在特定应用中使用特征工程的。

本书包含许多有用的特征工程概念和技术,这些概念和技术适用于多种方案:(a) 生成功能以表示没有要素时的数据,(b) 在(人们可能担心)存在时生成有效特征功能不够好/竞争力不够,(c) 在功能过多时选择功能,(d) 为特定类型的应用程序生成和选择有效功能,以及 (e) 了解与相关挑战以及需要处理的方法,各种数据类型。

成为VIP会员查看完整内容
0
85
小贴士
相关VIP内容
专知会员服务
47+阅读 · 4月27日
专知会员服务
37+阅读 · 4月23日
专知会员服务
123+阅读 · 2月25日
专知会员服务
59+阅读 · 2020年10月5日
专知会员服务
105+阅读 · 2020年7月29日
专知会员服务
108+阅读 · 2020年7月26日
专知会员服务
217+阅读 · 2020年3月23日
【经典书】Python计算机视觉编程,中文版,363页pdf
专知会员服务
95+阅读 · 2020年2月16日
新书《面向机器学习和数据分析的特征工程》,419页pdf
专知会员服务
85+阅读 · 2019年10月10日
相关资讯
Python机器学习课程(代码与教程)
专知
20+阅读 · 2019年5月13日
OpenCV4系统化学习路线图与教程
计算机视觉战队
15+阅读 · 2019年3月29日
资源 | 《数字图像处理》高清中文PDF
AI科技评论
13+阅读 · 2019年2月16日
实战 | 用Python做图像处理(三)
七月在线实验室
11+阅读 · 2018年5月29日
实战 | 用Python做图像处理(二)
七月在线实验室
13+阅读 · 2018年5月25日
实战 | 用Python做图像处理(一)
七月在线实验室
16+阅读 · 2018年5月23日
相关论文
Yingxue Pang,Jianxin Lin,Tao Qin,Zhibo Chen
14+阅读 · 1月21日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
Neural Image Captioning
Elaina Tan,Lakshay Sharma
4+阅读 · 2019年7月2日
Label Embedded Dictionary Learning for Image Classification
Shuai Shao,Yan-Jiang Wang,Bao-Di Liu,Weifeng Liu
4+阅读 · 2019年3月7日
Loris Bazzani,Tobias Domhan,Felix Hieber
3+阅读 · 2018年10月15日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Felix Hieber,Tobias Domhan,Michael Denkowski,David Vilar,Artem Sokolov,Ann Clifton,Matt Post
6+阅读 · 2018年6月1日
Chenhui Chu,Rui Wang
13+阅读 · 2018年6月1日
Yeeleng S. Vang,Zhen Chen,Xiaohui Xie
8+阅读 · 2018年2月3日
Jordan Prosky,Xingyou Song,Andrew Tan,Michael Zhao
6+阅读 · 2018年1月18日
Top