在六个步骤中学习高级Python 3主题的基础知识,所有这些都是为了让您成为一个有价值的实践者而设计的。这个更新版本的方法基于“六度分离”理论,该理论指出每个人和每件事都是最多六步之遥,并将每个主题分为两部分: 理论概念和使用适当的Python 3包的实际实现。

您将从Python 3编程语言基础、机器学习历史、发展和系统开发框架开始。本文还介绍了一些关键的数据挖掘/分析概念,如探索性分析、特征降维、回归、时间序列预测及其在Scikit-learn中的有效实现。您还将学习常用的模型诊断和调优技术。其中包括最优的类创建概率截止点、方差、偏差、装袋、提升、集成投票、网格搜索、随机搜索、贝叶斯优化和物联网数据降噪技术。

最后,您将回顾先进的文本挖掘技术,推荐系统,神经网络,深度学习,强化学习技术及其实现。本书中提供的所有代码都将以iPython笔记本的形式提供,使您能够尝试这些示例并将其扩展到您的优势。

你将学习

  • 了解机器学习开发和框架
  • 评估模型诊断和机器学习中的调优
  • 检查文本挖掘、自然语言处理(NLP)和推荐系统
  • 复习强化学习和CNN

这本书是给谁看的

Python开发人员、数据工程师和机器学习工程师希望将他们的知识或职业扩展到机器学习领域。

成为VIP会员查看完整内容
0
149

相关内容

Python的3.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0在设计的时候没有考虑向下兼容。

机器学习方法以有限的资源快速地从大量的数据中提取价值。它们是在广泛的工业应用中建立起来的工具,包括搜索引擎、DNA测序、股票市场分析和机器人移动,它们的使用正在迅速蔓延。了解这些方法的人可以选择有回报的工作。这个动手实践书册为计算机科学学生打开这些机会。它是专为具有有限的线性代数和微积分背景的大四本科生和硕士生设计的。它在图模型的框架内开发了从基本推理到高级技术的所有内容。学生们学到的不仅仅是一系列的技巧,他们还会发展分析和解决问题的技巧,这些技巧使他们能够适应真实的世界。许多例子和练习,以计算机为基础和理论,包括在每一章。为学生和教师的资源,包括一个MATLAB工具箱,可在网上获得。

成为VIP会员查看完整内容
0
108

本文介绍了一阶优化方法及其在机器学习中的应用。这不是一门关于机器学习的课程(特别是它不涉及建模和统计方面的考虑),它侧重于使用和分析可以扩展到具有大量参数的大型数据集和模型的廉价方法。这些方法都是围绕“梯度下降”的概念而变化的,因此梯度的计算起着主要的作用。本课程包括最优化问题的基本理论性质(特别是凸分析和一阶微分学)、梯度下降法、随机梯度法、自动微分、浅层和深层网络。

成为VIP会员查看完整内容
0
86

Python是一种多范式编程语言,已经成为数据科学家进行数据分析、可视化和机器学习的首选语言。有没有想过如何成为有效处理数据分析问题的专家,解决这些问题,并从数据中提取所有可用信息?好了,别再找了,这就是你要的书!

通过这个全面的指南,您将探索数据,并以一种有意义的方式展示统计分析的结果和结论。您将能够快速准确地执行实际操作的排序、缩减和后续分析,并充分理解数据分析方法如何支持业务决策。

您将首先了解Python中可用的数据分析工具,然后探索用于识别数据模式的统计模型。渐渐地,您将使用Python、panda和SciPy回顾统计推断。在此之后,我们将集中于使用计算工具执行回归,您将了解如何用算法的方式识别数据中的集群。最后,我们将深入探讨使用贝叶斯方法量化因果关系的高级技术,您将发现如何使用Python的工具进行监督机器学习。

你会学到什么

  • 将各种数据读入、排序并映射到Python和panda中
  • 识别模式,以便理解和研究数据
  • 使用统计模型来发现数据中的模式
  • 回顾使用Python、panda和SciPy的经典统计推断
  • 使用聚类检测数据中的相似性和差异性
  • 清理数据,使其有用
  • 在Jupyter笔记本生产出版准备工作数据纳入
成为VIP会员查看完整内容
0
54

获得高级数据分析概念的广泛基础,并发现数据库中的最新革命,如Neo4j、Elasticsearch和MongoDB。这本书讨论了如何实现ETL技术,包括主题爬行,这是应用在诸如高频算法交易和面向目标的对话系统等领域。您还将看到机器学习概念的示例,如半监督学习、深度学习和NLP。使用Python的高级数据分析还包括时间序列和主成分分析等重要的传统数据分析技术。

读完这本书,你将对分析项目的每个技术方面都有了经验。您将了解使用Python代码的概念,并提供在您自己的项目中使用的示例。

你会学到什么

  • 使用数据分析技术,如分类、聚类、回归和预测
  • 处理结构化和非结构化数据、ETL技术以及不同类型的数据库,如Neo4j、Elasticsearch、MongoDB和M- ySQL
  • 考察不同的大数据框架,包括Hadoop和Spark
  • 发现先进的机器学习概念,如半监督学习,深度学习,和NLP

这本书是给谁看的

对数据分析领域感兴趣的数据科学家和软件开发人员。

成为VIP会员查看完整内容
0
88

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
179

机器学习(ML)是一组用于发现数据关系的编程技术。使用ML算法,您可以对数据进行聚类和分类,以执行建议或欺诈检测之类的任务,并对销售趋势、风险分析和其他预测进行预测。机器学习曾经是学术数据科学家的领域,现在已经成为主流的业务流程,而像易于学习的R编程语言这样的工具将高质量的数据分析交到任何程序员的手中。《使用R、tidyverse和mlr的机器学习》将教会您广泛使用的ML技术,以及如何使用R编程语言及其强大的工具生态系统将它们应用于您自己的数据集。这本书会让你开始!

对这项技术

机器学习技术准确而有效地识别数据中的模式和关系,并使用这些模型对新数据进行预测。ML技术甚至可以在相对较小的数据集上工作,使这些技能成为几乎所有数据分析任务的强大盟友。R语言的设计考虑了数学和统计的应用。小型数据集是它的最佳选择,它的现代数据科学工具(包括流行的tidyverse包)使R成为ML的自然选择。

关于这本书

《使用R、tidyverse和mlr的机器学习》将教会您如何使用强大的R编程语言从数据中获得有价值的见解。作者兼R专家Hefin Ioan Rhys以其引人入胜的、非正式的风格为ML基础知识打下了坚实的基础,并向您介绍了tidyverse,这是一套专门为实用数据科学设计的强大的R工具。有了这些基础知识,您将更深入地研究常用的机器学习技术,包括分类、预测、约简和聚类算法,并将每种技术应用于实际数据,从而对有趣的问题进行预测。

使用tidyverse包,您将转换、清理和绘制您的数据,并在工作中使用数据科学最佳实践。为了简化您的学习过程,您还将使用R的mlr包,这是一个非常灵活的接口,用于各种核心算法,允许您以最少的编码执行复杂的ML任务。您将探索一些基本概念,如过拟合、欠拟合、验证模型性能,以及如何为您的任务选择最佳模型。富有启发性的图片提供了清晰的解释,巩固了你的新知识。

无论您是在处理业务问题、处理研究数据,还是仅仅是一个有数据头脑的开发人员,您都可以通过本实用教程立即构建自己的ML管道!

里面有什么

  • 常用ML技术
  • 使用tidyverse包来组织和绘制数据
  • 验证模型的性能
  • 为您的任务选择最佳的ML模型
  • 各种实际的编码练习
  • ML的最佳实践
成为VIP会员查看完整内容
0
76

掌握通过机器学习和深度学习识别和解决复杂问题的基本技能。使用真实世界的例子,利用流行的Python机器学习生态系统,这本书是你学习机器学习的艺术和科学成为一个成功的实践者的完美伴侣。本书中使用的概念、技术、工具、框架和方法将教会您如何成功地思考、设计、构建和执行机器学习系统和项目。

使用Python进行的实际机器学习遵循结构化和全面的三层方法,其中包含了实践示例和代码。

第1部分侧重于理解机器学习的概念和工具。这包括机器学习基础,对算法、技术、概念和应用程序的广泛概述,然后介绍整个Python机器学习生态系统。还包括有用的机器学习工具、库和框架的简要指南。

第2部分详细介绍了标准的机器学习流程,重点介绍了数据处理分析、特征工程和建模。您将学习如何处理、总结和可视化各种形式的数据。特性工程和选择方法将详细介绍真实数据集,然后是模型构建、调优、解释和部署。

第3部分探讨了多个真实世界的案例研究,涵盖了零售、交通、电影、音乐、营销、计算机视觉和金融等不同领域和行业。对于每个案例研究,您将学习各种机器学习技术和方法的应用。动手的例子将帮助您熟悉最先进的机器学习工具和技术,并了解什么算法最适合任何问题。

实用的机器学习与Python将授权您开始解决您自己的问题与机器学习今天!

你将学习:

  • 执行端到端机器学习项目和系统
  • 使用行业标准、开放源码、健壮的机器学习工具和框架实现实践示例
  • 回顾描述机器学习和深度学习在不同领域和行业中的应用的案例研究
  • 广泛应用机器学习模型,包括回归、分类和聚类。
  • 理解和应用深度学习的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

这本书是给谁看的 IT专业人士、分析师、开发人员、数据科学家、工程师、研究生

目录:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

成为VIP会员查看完整内容
0
114

这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
106

主题: Mastering Machine Learning with Python in Six Steps

简介: 分六个步骤探索高级Python 3主题的基本原理,所有这些步骤都是为了让您成为一个有价值的实践者而设计的。这个更新版本的方法是基于“六度分离”理论,它指出每个人和所有事物都是最大的六步,并将每一个主题呈现为两个部分:理论概念和使用适当的Python 3包的实际实现。您将从Python3编程语言的基础知识、机器学习历史、演化和系统开发框架开始。本文还介绍了探索性分析、特征降维、回归、时间序列预测等关键数据挖掘/分析概念及其在Scikit学习中的有效实现。您还将学习常用的模型诊断和调优技术。其中包括类创建的最佳概率截止点、方差、偏差、bagging、boosting、集成投票、网格搜索、随机搜索、贝叶斯优化以及物联网数据的降噪技术。最后,您将回顾高级文本挖掘技术、推荐系统、神经网络、深度学习、强化学习技术及其实现。本书中提供的所有代码都将以iPython笔记本的形式提供,使您能够尝试这些示例并将它们扩展到您的优势。

作者简介: Swamynathan Manohar 是一名数据科学从业者和一名狂热的程序员,在数据仓库、商业智能(BI)、分析工具开发、即席分析、预测建模、数据科学产品开发、咨询等各种数据科学相关领域拥有超过14年的经验,制定策略并执行分析计划。

成为VIP会员查看完整内容
0
50

题目: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

书籍简介: 通过最近的一系列突破,深度学习促进了整个机器学习领域的发展。现在,即使对这项技术一无所知的程序员也可以使用简单、高效的工具来实现能够从数据中学习的程序。这本实用的书告诉你怎么做。通过使用具体的例子、最小理论和两个可用于生产的Python框架Scikit Learn和TensorFlow的作者Aurélien Géron帮助您直观地理解用于构建智能系统的概念和工具。您将学习一系列技术,从简单的线性回归开始,然后进入深层神经网络。每一章的练习都有助于你应用你所学的知识。

  • 探索机器学习领域,特别是神经网络

  • 使用Scikit Learn端到端跟踪示例机器学习项目

  • 探索几种训练模型,包括支持向量机、决策树、随机森林和集成方法

  • 利用TensorFlow库建立和训练神经网络

  • 深入研究神经网络结构,包括卷积网络、递归网络和深度强化学习

  • 学习深度神经网络的训练和缩放技术

作者简介: Aurélien Géron,Kiwisoft的机器学习顾问,也是畅销书《与Scikit-Learn、Keras和TensorFlow一起进行机器学习》的作者。此前,他曾领导YouTube的视频分类团队,是Wifirst的创始人和首席技术官,并在多个领域担任顾问:金融(摩根大楼和法国兴业银行)、国防(加拿大国防部)和医疗(输血)。他还出版了一些技术书籍(关于c++、WiFi和互联网架构),他是巴黎多芬大学的讲师。

成为VIP会员查看完整内容
0
130
小贴士
相关VIP内容
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
179+阅读 · 2020年3月17日
专知会员服务
106+阅读 · 2020年2月11日
相关论文
Ramchandra Joshi,Purvi Goel,Raviraj Joshi
4+阅读 · 2020年1月19日
Bernhard Schölkopf
9+阅读 · 2019年11月24日
Deepak Nathani,Jatin Chauhan,Charu Sharma,Manohar Kaul
31+阅读 · 2019年6月4日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
7+阅读 · 2019年1月16日
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch,Chandan Singh,Karl Kumbier,Reza Abbasi-Asl,Bin Yu
12+阅读 · 2019年1月14日
Shotaro Shiba Funai,Dimitrios Giataganas
3+阅读 · 2018年10月18日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Dinghan Shen,Martin Renqiang Min,Yitong Li,Lawrence Carin
5+阅读 · 2018年8月30日
Question Answering by Reasoning Across Documents with Graph Convolutional Networks
Nicola De Cao,Wilker Aziz,Ivan Titov
3+阅读 · 2018年8月29日
Top