这本书在对算法工作原理的高层次理解和对优化模型的具体细节的了解之间找到一个平衡点。这本书将给你的信心和技能时,开发所有主要的机器学习模型。在这本Pro机器学习算法中,您将首先在Excel中开发算法,以便在用Python/R实现模型之前,实际了解可以在模型中调优的所有细节。

你将涵盖所有主要的算法:监督和非监督学习,其中包括线性/逻辑回归;k - means聚类;主成分分析;推荐系统;决策树;随机森林;“GBM”;和神经网络。您还将通过CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度学习。你不仅要学习算法,还要学习特征工程的概念来最大化模型的性能。您将看到该理论与案例研究,如情绪分类,欺诈检测,推荐系统,和图像识别,以便您得到最佳的理论和实践为工业中使用的绝大多数机器学习算法。在学习算法的同时,您还将接触到在所有主要云服务提供商上运行的机器学习模型。

你会学到什么?

  • 深入了解所有主要的机器学习和深度学习算法
  • 充分理解在构建模型时要避免的陷阱
  • 在云中实现机器学习算法
  • 通过对每种算法的案例研究,采用动手实践的方法
  • 学习集成学习的技巧,建立更精确的模型
  • 了解R/Python编程的基础知识和Keras深度学习框架

这本书是给谁看的

希望转换到数据科学角色的业务分析师/ IT专业人员。想要巩固机器学习知识的数据科学家。

成为VIP会员查看完整内容
0
102

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
111

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
85

改进您的编程技术和方法,成为一个更有生产力和创造性的Python程序员。本书探索了一些概念和特性,这些概念和特性不仅将改进您的代码,而且还将帮助您理解Python社区,并对Python哲学有深入的了解和详细的介绍。

专业的Python 3,第三版给你的工具写干净,创新的代码。它首先回顾了一些核心的Python原则,这些原则将在本书后面的各种概念和示例中进行说明。本书的前半部分探讨了函数、类、协议和字符串的各个方面,描述了一些技术,这些技术可能不是常见的知识,但它们共同构成了坚实的基础。后面的章节涉及文档、测试和应用程序分发。在此过程中,您将开发一个复杂的Python框架,该框架将整合在本书中所学到的思想。

这个版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup进行web抓取、使用请求调用没有字符串的web页面、用于分发和安装的新工具等等。在本书的最后,您将准备好部署不常见的特性,这些特性可以将您的Python技能提升到下一个级别。

你将学习

  • 用各种类型的Python函数实现程序
  • 使用类和面向对象编程
  • 使用标准库和第三方库中的字符串
  • 使用Python获取web站点数据
  • 通过编写测试套件来自动化单元测试
  • 回顾成像、随机数生成和NumPy科学扩展
  • 理解Python文档的精髓,以帮助您决定分发代码的最佳方式

这本书是给谁看的 熟悉Python的中级程序员,希望提升到高级水平。您应该至少编写了一个简单的Python应用程序,并且熟悉基本的面向对象方法、使用交互式解释器和编写控制结构。

成为VIP会员查看完整内容
0
120

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
176

【导读】最近GitHub上网友ctgk更新公布了Python3实现的经典机器学习图书《Pattern Recognition and Machine Learning》中的代码。在它之前曾有过Matlab版本,而新公布的版本采用机器学习领域最流行的python代码实现,比较符合大家的使用习惯。最重要的是代码以Jupyter notebook形式呈现,可视化结果非常适合边看书边调试代码。专知内容组特定整理PRML相关资料,供大家参考学习。

MLPR python 代码链接: https://github.com/ctgk/PRML

▌PRML书籍

PRML是模式识别和机器学习领域的经典著作,出版于2007年。该书作者 Christpher M. Bishop 是模式识别和机器学习领域的大家,其1995年所著的“Nerual Networks for Pattern Recognition”也是模式识别、人工神经网络领域的经典著作。

PRML深入浅出地介绍了模式识别与机器学习的基本理论和主要方法,同时还涵盖了模式识别与机器学习领域的一些最新进展,不仅适合初学者学习,而且对专业研究人员也有很大的参考价值。

目录

  • 导论
  • 概率分布
  • 线性回归模型
  • 线性分类模型
  • 神经网络
  • 核方法
  • 讲SVM
  • 现代基于图模型
  • EM 算法
  • 近似推断
  • 采样
  • PCA及一些改进
  • HMM 模型和LDS
  • 集成方法
成为VIP会员查看完整内容
0
103

强化学习是机器学习的一个热门领域,从基础开始: 发现代理和环境如何演变,然后获得它们之间如何相互关联的清晰联系。然后你将学习与强化学习相关的理论,并了解建立强化学习过程的概念。

这本书讨论了对强化学习很重要的算法实现,包括马尔可夫决策过程和半马尔可夫决策过程。下一节将向您展示如何在查看Open AI Gym之前开始使用Open AI。然后您将学习Python中关于增强学习方面的群体智能。

本书的最后一部分从TensorFlow环境开始,并给出了如何将强化学习应用于TensorFlow的概述。还有Keras,一个可以用于强化学习的框架。最后,您将深入研究谷歌的深层思想,并看到可以使用强化学习的场景。

你将学习

  • 吸收强化学习过程的核心概念
  • 使用深度学习和人工智能的高级主题
  • 与Open AI Gym、Open AI和Python一起工作
  • 利用TensorFlow和Keras使用Python进行强化学习

这本书是给谁看的

数据科学家、机器学习和深度学习专业人员、希望适应和学习强化学习的开发人员。

成为VIP会员查看完整内容
0
84

掌握通过机器学习和深度学习识别和解决复杂问题的基本技能。使用真实世界的例子,利用流行的Python机器学习生态系统,这本书是你学习机器学习的艺术和科学成为一个成功的实践者的完美伴侣。本书中使用的概念、技术、工具、框架和方法将教会您如何成功地思考、设计、构建和执行机器学习系统和项目。

使用Python进行的实际机器学习遵循结构化和全面的三层方法,其中包含了实践示例和代码。

第1部分侧重于理解机器学习的概念和工具。这包括机器学习基础,对算法、技术、概念和应用程序的广泛概述,然后介绍整个Python机器学习生态系统。还包括有用的机器学习工具、库和框架的简要指南。

第2部分详细介绍了标准的机器学习流程,重点介绍了数据处理分析、特征工程和建模。您将学习如何处理、总结和可视化各种形式的数据。特性工程和选择方法将详细介绍真实数据集,然后是模型构建、调优、解释和部署。

第3部分探讨了多个真实世界的案例研究,涵盖了零售、交通、电影、音乐、营销、计算机视觉和金融等不同领域和行业。对于每个案例研究,您将学习各种机器学习技术和方法的应用。动手的例子将帮助您熟悉最先进的机器学习工具和技术,并了解什么算法最适合任何问题。

实用的机器学习与Python将授权您开始解决您自己的问题与机器学习今天!

你将学习:

  • 执行端到端机器学习项目和系统
  • 使用行业标准、开放源码、健壮的机器学习工具和框架实现实践示例
  • 回顾描述机器学习和深度学习在不同领域和行业中的应用的案例研究
  • 广泛应用机器学习模型,包括回归、分类和聚类。
  • 理解和应用深度学习的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

这本书是给谁看的 IT专业人士、分析师、开发人员、数据科学家、工程师、研究生

目录:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

成为VIP会员查看完整内容
0
114

在六个步骤中学习高级Python 3主题的基础知识,所有这些都是为了让您成为一个有价值的实践者而设计的。这个更新版本的方法基于“六度分离”理论,该理论指出每个人和每件事都是最多六步之遥,并将每个主题分为两部分: 理论概念和使用适当的Python 3包的实际实现。

您将从Python 3编程语言基础、机器学习历史、发展和系统开发框架开始。本文还介绍了一些关键的数据挖掘/分析概念,如探索性分析、特征降维、回归、时间序列预测及其在Scikit-learn中的有效实现。您还将学习常用的模型诊断和调优技术。其中包括最优的类创建概率截止点、方差、偏差、装袋、提升、集成投票、网格搜索、随机搜索、贝叶斯优化和物联网数据降噪技术。

最后,您将回顾先进的文本挖掘技术,推荐系统,神经网络,深度学习,强化学习技术及其实现。本书中提供的所有代码都将以iPython笔记本的形式提供,使您能够尝试这些示例并将其扩展到您的优势。

你将学习

  • 了解机器学习开发和框架
  • 评估模型诊断和机器学习中的调优
  • 检查文本挖掘、自然语言处理(NLP)和推荐系统
  • 复习强化学习和CNN

这本书是给谁看的

Python开发人员、数据工程师和机器学习工程师希望将他们的知识或职业扩展到机器学习领域。

成为VIP会员查看完整内容
0
147
小贴士
相关论文
Blockchain for Future Smart Grid: A Comprehensive Survey
Muhammad Baqer Mollah,Jun Zhao,Dusit Niyato,Kwok-Yan Lam,Xin Zhang,Amer M. Y. M. Ghias,Leong Hai Koh,Lei Yang
8+阅读 · 2019年11月8日
Yuhang Cao,Kai Chen,Chen Change Loy,Dahua Lin
10+阅读 · 2019年4月9日
FocusNet: An attention-based Fully Convolutional Network for Medical Image Segmentation
Chaitanya Kaul,Suresh Manandhar,Nick Pears
4+阅读 · 2019年2月8日
Learning Embedding Adaptation for Few-Shot Learning
Han-Jia Ye,Hexiang Hu,De-Chuan Zhan,Fei Sha
8+阅读 · 2018年12月10日
Federated Learning for Mobile Keyboard Prediction
Andrew Hard,Kanishka Rao,Rajiv Mathews,Françoise Beaufays,Sean Augenstein,Hubert Eichner,Chloé Kiddon,Daniel Ramage
3+阅读 · 2018年11月8日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
8+阅读 · 2018年7月8日
Luke Metz,Niru Maheswaranathan,Brian Cheung,Jascha Sohl-Dickstein
5+阅读 · 2018年5月23日
Jiayuan Gu,Han Hu,Liwei Wang,Yichen Wei,Jifeng Dai
4+阅读 · 2018年3月19日
Jonas Gehring,Michael Auli,David Grangier,Denis Yarats,Yann N. Dauphin
3+阅读 · 2017年7月25日
Anastasia Pentina,Christoph H. Lampert
3+阅读 · 2017年6月8日
Top