Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones. In this work, we extend this framework by (i) forcing the learned feature extractor to be domain-invariant, and (ii) training it through data augmentation in the feature space, namely performing feature augmentation. While data augmentation in the image space is a well established technique in deep learning, feature augmentation has not yet received the same level of attention. We accomplish it by means of a feature generator trained by playing the GAN minimax game against source features. Results show that both enforcing domain-invariance and performing feature augmentation lead to superior or comparable performance to state-of-the-art results in several unsupervised domain adaptation benchmarks.

3
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/

We consider the problem of unsupervised domain adaptation for semantic segmentation by easing the domain shift between the source domain (synthetic data) and the target domain (real data) in this work. State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue. Based on the observation that stuff categories usually share similar appearances across images of different domains while things (i.e. object instances) have much larger differences, we propose to improve the semantic-level alignment with different strategies for stuff regions and for things: 1) for the stuff categories, we generate feature representation for each class and conduct the alignment operation from the target domain to the source domain; 2) for the thing categories, we generate feature representation for each individual instance and encourage the instance in the target domain to align with the most similar one in the source domain. In this way, the individual differences within thing categories will also be considered to alleviate over-alignment. In addition to our proposed method, we further reveal the reason why the current adversarial loss is often unstable in minimizing the distribution discrepancy and show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains. We conduct extensive experiments in two unsupervised domain adaptation tasks, i.e. GTA5 to Cityscapes and SYNTHIA to Cityscapes, and achieve the new state-of-the-art segmentation accuracy.

0
5
下载
预览

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

0
10
下载
预览

In this work, we study the problem of training deep networks for semantic image segmentation using only a fraction of annotated images, which may significantly reduce human annotation efforts. Particularly, we propose a strategy that exploits the unpaired image style transfer capabilities of CycleGAN in semi-supervised segmentation. Unlike recent works using adversarial learning for semi-supervised segmentation, we enforce cycle consistency to learn a bidirectional mapping between unpaired images and segmentation masks. This adds an unsupervised regularization effect that boosts the segmentation performance when annotated data is limited. Experiments on three different public segmentation benchmarks (PASCAL VOC 2012, Cityscapes and ACDC) demonstrate the effectiveness of the proposed method. The proposed model achieves 2-4% of improvement with respect to the baseline and outperforms recent approaches for this task, particularly in low labeled data regime.

0
3
下载
预览

Despite much success, deep learning generally does not perform well with small labeled training sets. In these scenarios, data augmentation has shown much promise in alleviating the need for more labeled data, but it so far has mostly been applied in supervised settings and achieved limited gains. In this work, we propose to apply data augmentation to unlabeled data in a semi-supervised learning setting. Our method, named Unsupervised Data Augmentation or UDA, encourages the model predictions to be consistent between an unlabeled example and an augmented unlabeled example. Unlike previous methods that use random noise such as Gaussian noise or dropout noise, UDA has a small twist in that it makes use of harder and more realistic noise generated by state-of-the-art data augmentation methods. This small twist leads to substantial improvements on six language tasks and three vision tasks even when the labeled set is extremely small. For example, on the IMDb text classification dataset, with only 20 labeled examples, UDA achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples. On standard semi-supervised learning benchmarks CIFAR-10 and SVHN, UDA outperforms all previous approaches and achieves an error rate of 2.7% on CIFAR-10 with only 4,000 examples and an error rate of 2.85% on SVHN with only 250 examples, nearly matching the performance of models trained on the full sets which are one or two orders of magnitude larger. UDA also works well on large-scale datasets such as ImageNet. When trained with 10% of the labeled set, UDA improves the top-1/top-5 accuracy from 55.1/77.3% to 68.7/88.5%. For the full ImageNet with 1.3M extra unlabeled data, UDA further pushes the performance from 78.3/94.4% to 79.0/94.5%.

0
3
下载
预览

Semantic segmentation is one of the basic topics in computer vision, it aims to assign semantic labels to every pixel of an image. Unbalanced semantic label distribution could have a negative influence on segmentation accuracy. In this paper, we investigate using data augmentation approach to balance the semantic label distribution in order to improve segmentation performance. We propose using generative adversarial networks (GANs) to generate realistic images for improving the performance of semantic segmentation networks. Experimental results show that the proposed method can not only improve segmentation performance on those classes with low accuracy, but also obtain 1.3% to 2.1% increase in average segmentation accuracy. It shows that this augmentation method can boost accuracy and be easily applicable to any other segmentation models.

0
3
下载
预览

Deep learning based object detectors require thousands of diversified bounding box and class annotated examples. Though image object detectors have shown rapid progress in recent years with the release of multiple large-scale static image datasets, object detection on videos still remains an open problem due to scarcity of annotated video frames. Having a robust video object detector is an essential component for video understanding and curating large-scale automated annotations in videos. Domain difference between images and videos makes the transferability of image object detectors to videos sub-optimal. The most common solution is to use weakly supervised annotations where a video frame has to be tagged for presence/absence of object categories. This still takes up manual effort. In this paper we take a step forward by adapting the concept of unsupervised adversarial image-to-image translation to perturb static high quality images to be visually indistinguishable from a set of video frames. We assume the presence of a fully annotated static image dataset and an unannotated video dataset. Object detector is trained on adversarially transformed image dataset using the annotations of the original dataset. Experiments on Youtube-Objects and Youtube-Objects-Subset datasets with two contemporary baseline object detectors reveal that such unsupervised pixel level domain adaptation boosts the generalization performance on video frames compared to direct application of original image object detector. Also, we achieve competitive performance compared to recent baselines of weakly supervised methods. This paper can be seen as an application of image translation for cross domain object detection.

0
3
下载
预览

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

0
4
下载
预览

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

0
9
下载
预览

In this paper, we propose the Cross-Domain Adversarial Auto-Encoder (CDAAE) to address the problem of cross-domain image inference, generation and transformation. We make the assumption that images from different domains share the same latent code space for content, while having separate latent code space for style. The proposed framework can map cross-domain data to a latent code vector consisting of a content part and a style part. The latent code vector is matched with a prior distribution so that we can generate meaningful samples from any part of the prior space. Consequently, given a sample of one domain, our framework can generate various samples of the other domain with the same content of the input. This makes the proposed framework different from the current work of cross-domain transformation. Besides, the proposed framework can be trained with both labeled and unlabeled data, which makes it also suitable for domain adaptation. Experimental results on data sets SVHN, MNIST and CASIA show the proposed framework achieved visually appealing performance for image generation task. Besides, we also demonstrate the proposed method achieved superior results for domain adaptation. Code of our experiments is available in https://github.com/luckycallor/CDAAE.

0
3
下载
预览

Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation" framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train re-ID models with the translated images by supervised methods. Yet, being an essential part of this framework, unsupervised image-image translation suffers from the information loss of source-domain labels during translation. Our motivation is two-fold. First, for each image, the discriminative cues contained in its ID label should be maintained after translation. Second, given the fact that two domains have entirely different persons, a translated image should be dissimilar to any of the target IDs. To this end, we propose to preserve two types of unsupervised similarities, 1) self-similarity of an image before and after translation, and 2) domain-dissimilarity of a translated source image and a target image. Both constraints are implemented in the similarity preserving generative adversarial network (SPGAN) which consists of a Siamese network and a CycleGAN. Through domain adaptation experiment, we show that images generated by SPGAN are more suitable for domain adaptation and yield consistent and competitive re-ID accuracy on two large-scale datasets.

0
7
下载
预览
小贴士
相关论文
Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation
Zhonghao Wang,Mo Yu,Yunchao Wei,Rogerior Feris,Jinjun Xiong,Wen-mei Hwu,Thomas S. Huang,Honghui Shi
5+阅读 · 2020年3月18日
On Feature Normalization and Data Augmentation
Boyi Li,Felix Wu,Ser-Nam Lim,Serge Belongie,Kilian Q. Weinberger
10+阅读 · 2020年2月25日
Revisiting CycleGAN for semi-supervised segmentation
Arnab Kumar Mondal,Aniket Agarwal,Jose Dolz,Christian Desrosiers
3+阅读 · 2019年8月30日
Qizhe Xie,Zihang Dai,Eduard Hovy,Minh-Thang Luong,Quoc V. Le
3+阅读 · 2019年7月10日
Pixel Level Data Augmentation for Semantic Image Segmentation using Generative Adversarial Networks
Shuangting Liu,Jiaqi Zhang,Yuxin Chen,Yifan Liu,Zengchang Qin,Tao Wan
3+阅读 · 2019年2月8日
Avisek Lahiri,Charan Reddy,Prabir Kumar Biswas
3+阅读 · 2018年10月4日
Qi Dou,Cheng Ouyang,Cheng Chen,Hao Chen,Pheng-Ann Heng
4+阅读 · 2018年6月19日
Assia Benbihi,Matthieu Geist,Cédric Pradalier
9+阅读 · 2018年5月10日
Haodi Hou,Jing Huo,Yang Gao
3+阅读 · 2018年4月17日
Weijian Deng,Liang Zheng,Guoliang Kang,Yi Yang,Qixiang Ye,Jianbin Jiao
7+阅读 · 2018年1月10日
相关VIP内容
专知会员服务
20+阅读 · 2020年4月7日
专知会员服务
64+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
6+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
20+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
8+阅读 · 2019年1月2日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top