区块链隐私保护研究综述——祝烈煌详解

2018 年 11 月 28 日 计算机研究与发展
区块链隐私保护研究综述——祝烈煌详解

区块链隐私保护研究综述

区块链技术的核心特征是“公开可验证”、“防篡改”和“隐私保护”,特别是去中心化”。作为分布式总账技术、智能合约基础平台、分布式新型计算范式,可以有效构建可编程货币、可编程金融和可编程社会,势必将对金融及其他领域带来深远影响,并驱动新一轮技术变革和应用变革.但是区块链技术在提高效率、降低成本、提高数据安全性的同时,也面临严重的隐私泄露问题,得到研究者的广泛关注.

本文将介绍区块链技术架构,定义区块链技术中身份隐私和交易隐私的概念,分析区块链技术在隐私保护方面存在的优势和不足,并分类描述现有研究中针对区块链隐私的攻击方法,例如交易溯源技术和账户聚类技术.然后详细介绍针对区块链网络层、交易层和应用层的隐私保护机制,包括网络层恶意节点检测和限制接入技术,区块链交易层的混币技术、加密技术和限制发布技术,以及针对区块链应用的防御机制.最后,分析了现有区块链隐私保护技术存在的缺陷,展望了未来发展方向.此外,还讨论针对恶意使用区块链技术的监管方法.

祝烈煌,高峰,沈蒙,等。区块链隐私保护研究综述【J】。计算机研究与发展,2017,,54(10):2170-2186

Zhu Liehuang, Gaofeng, Shenmeng, et al. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of the Computer Research and Development, 2017,54(10):2170-2186



祝烈煌,博士,教授,博士生导师。2004年8月毕业北京理工大学计算机学院,获计算机应用专业博士学位。现担任计算机学院副院长、网络与信息安全学科方向责任教授。长期从事网络与信息安全方向的研究工作,主要研究兴趣有密码算法及安全协议、物联网安全、云计算安全、大数据隐私保护、移动互联网安全、天地一体化网络安全、可信计算等。



登录查看更多
7

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

题目: 机器学习的隐私保护研究综述

简介:

大规模数据收集大幅提升了机器学习算法的性能,实现了经济效益和社会效益的共赢,但也令个人隐私保护面临更大的风险与挑战.机器学习的训练模式主要分为集中学习和联邦学习2类,前者在模型训练前需统一收集各方数据,尽管易于部署,却存在极大数据隐私与安全隐患;后者实现了将各方数据保留在本地的同时进行模型训练,但该方式目前正处于研究的起步阶段,无论在技术还是部署中仍面临诸多问题与挑战.现有的隐私保护技术研究大致分为2条主线,即以同态加密和安全多方计算为代表的加密方法和以差分隐私为代表的扰动方法,二者各有利弊.为综述当前机器学习的隐私问题,并对现有隐私保护研究工作进行梳理和总结,首先分别针对传统机器学习和深度学习2类情况,探讨集中学习下差分隐私保护的算法设计;之后概述联邦学习中存的隐私问题及保护方法;最后总结目前隐私保护中面临的主要挑战,并着重指出隐私保护与模型可解释性研究、数据透明之间的问题与联系.

成为VIP会员查看完整内容
机器学习的隐私保护研究综述.pdf
0
77

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。最近来自斯坦福、CMU、Google等25家机构58位学者共同发表了关于联邦学习最新进展与开放问题的综述论文《Advances and Open Problems in Federated Learning》,共105页pdf调研了438篇文献,讲解了最新联邦学习进展,并提出大量开放型问题。

摘要

联邦学习(FL)是一种机器学习设置,在这种设置中,许多客户(例如移动设备或整个组织)在中央服务器(例如服务提供商)的协调下协作地训练模型,同时保持训练数据分散。FL体现了集中数据收集和最小化的原则,可以减轻由于传统的、集中的机器学习和数据科学方法所带来的许多系统隐私风险和成本。在FL研究爆炸性增长的推动下,本文讨论了近年来的进展,并提出了大量的开放问题和挑战。

目录

1 介绍

  • 1.1 跨设备联邦学习设置
  • 1.1.1 联邦学习中模型的生命周期
  • 1.1.2 典型的联邦训练过程
  • 1.2 联邦学习研究
  • 1.3 组织
  1. 放宽核心联邦学习假设:应用到新兴的设置和场景
  • 2.1 完全分散/点对点分布式学习
  • 2.2 跨竖井联邦学习
  • 2.3 分离学习
  1. 提高效率和效果
  • 3.1 联邦学习中的非iid数据
  • 3.2 联邦学习优化算法
  • 3.3 多任务学习、个性化和元学习
  • 3.4 为联邦学习调整ML工作流
  • 3.5 通信与压缩
  • 3.6 适用于更多类型的机器学习问题和模型

4 .保护用户数据的隐私

  • 4.1 深入研究参与者、威胁模型和隐私
  • 4.2 工具与技术
  • 4.3 对外部恶意行为者的保护
  • 4.4 对抗服务器的保护
  • 4.5 用户感知
  1. 对攻击和失败的健壮性
  • 5.1 模型性能的对抗性攻击
  • 5.2 非恶意失效模式
  • 5.3 探索隐私和健壮性之间的张力
  1. 确保公平,消除偏见
  • 6.1 训练数据的偏差
  • 6.2不访问敏感属性的公平性
  • 6.3公平、隐私和健壮性
  • 6.4利用联合来改善模型多样性
  • 6.5联邦公平:新的机遇和挑战

7 结束语

  • 用于联邦学习的软件和数据集
成为VIP会员查看完整内容
0
105

摘要: 随着机器学习技术在生产、生活等各个领域的广泛应用,机器学习算法本身的安全问题也引起越来越多的 关注。基于对抗样本的攻击方法是机器学习算法普遍面临的安全挑战之一。以机器学习的安全性问题为出发点,介 绍了当前机器学习面临的隐私攻击、完整性攻击等安全问题,归纳了目前常见对抗样本生成方法的发展过程及各自 的特点,总结了目前已有的针对对抗样本攻击的防御技术,最后对提高机器学习算法鲁棒性的方法做了进一步的展 望。

作者介绍:

朱清新:1982年1月四川师范大学数学系本科毕业获学士学位。1984年7月北京理工大学应用数学专业毕业获硕士学位。1984年8月起任西南技术物理研究所工程师、副研究员,作为技术骨干参加了国防科工委7712工程项目并获科研成果三等奖。1993年5月渥太华大学应用数学和电子工程系控制论专业毕业获博士学位。1993年5月至1996年3月在渥太华大学电子工程系和加拿大卡尔顿大学计算机学院从事博士后研究并获计算机第二硕士学位。1996年3月至1997年11月任加拿大Nortel公司和OmniMark高级研究员。1998年3月应聘回国到电子科技大学计算机学院工作,1999年6月聘为教授、2001年6月聘为博士生导师。2002年9月至2003年3月赴加拿大蒙特利尔Concordia大学计算机系任高级访问学者。现任电子科技大学计算机学院学术委员会主任,计算运筹学研究室主任。主要研究领域包括:生物信息学、信息检索、计算运筹学与最优化。

张小松: 长江学者特聘教授,国家重点研发计划网络空间安全专项首席科学家, 2017年网络安全优秀人才奖获得者。长期致力于软件安全、网络安全和数据安全领域的研究,成果在应用中取得重要的社会和经济效益,近年来多次获国家和省部级成果奖励,发表包括CCF A类期刊IT、TSE、TIFS在内的学术论文六十余篇,出版了《网络安全协议》、《恶意软件分析与检测》、《软件测试》等专著、教材和译著5部,获授权国际、国内发明专利22项,公开50多项,获软件著作权登记10项。

成为VIP会员查看完整内容
0
19
小贴士
相关资讯
联邦学习或将助力IoT走出“数据孤岛”?
中国计算机学会
12+阅读 · 2019年3月16日
基于差分隐私的地理社交网络发布
FCS
8+阅读 · 2019年2月22日
打包看——2018安全与隐私保护论文
计算机研究与发展
5+阅读 · 2019年1月8日
AI综述专栏 | 深度神经网络加速与压缩
人工智能前沿讲习班
27+阅读 · 2018年10月31日
【优青论文】深度神经网络压缩与加速综述
计算机研究与发展
7+阅读 · 2018年9月20日
FCS 12(1) 文章 | 知识图谱综述
FCS
7+阅读 · 2018年3月12日
【区块链】区块链是什么?20问:读懂区块链
产业智能官
5+阅读 · 2018年1月10日
2017年刊登论文大盘点——综述篇
计算机研究与发展
3+阅读 · 2017年12月14日
综述——隐私保护集合交集计算技术研究
计算机研究与发展
8+阅读 · 2017年10月24日
相关论文
A survey on deep hashing for image retrieval
Xiaopeng Zhang
9+阅读 · 2020年6月10日
A Survey on Edge Intelligence
Dianlei Xu,Tong Li,Yong Li,Xiang Su,Sasu Tarkoma,Pan Hui
21+阅读 · 2020年3月26日
Qingyu Guo,Fuzhen Zhuang,Chuan Qin,Hengshu Zhu,Xing Xie,Hui Xiong,Qing He
70+阅读 · 2020年2月28日
Joost Verbraeken,Matthijs Wolting,Jonathan Katzy,Jeroen Kloppenburg,Tim Verbelen,Jan S. Rellermeyer
24+阅读 · 2019年12月20日
Generative Adversarial Networks: A Survey and Taxonomy
Zhengwei Wang,Qi She,Tomas E. Ward
10+阅读 · 2019年6月4日
Pixel Level Data Augmentation for Semantic Image Segmentation using Generative Adversarial Networks
Shuangting Liu,Jiaqi Zhang,Yuxin Chen,Yifan Liu,Zengchang Qin,Tao Wan
3+阅读 · 2019年2月8日
Joaquin Vanschoren
108+阅读 · 2018年10月8日
Tran Dang Quang Vinh,Tuan-Anh Nguyen Pham,Gao Cong,Xiao-Li Li
9+阅读 · 2018年4月18日
Joachim D. Curtó,Irene C. Zarza,Fernando De La Torre,Irwin King,Michael R. Lyu
7+阅读 · 2018年1月27日
Chaowei Xiao,Bo Li,Jun-Yan Zhu,Warren He,Mingyan Liu,Dawn Song
8+阅读 · 2018年1月15日
Top