Semantic segmentation is one of the basic topics in computer vision, it aims to assign semantic labels to every pixel of an image. Unbalanced semantic label distribution could have a negative influence on segmentation accuracy. In this paper, we investigate using data augmentation approach to balance the semantic label distribution in order to improve segmentation performance. We propose using generative adversarial networks (GANs) to generate realistic images for improving the performance of semantic segmentation networks. Experimental results show that the proposed method can not only improve segmentation performance on those classes with low accuracy, but also obtain 1.3% to 2.1% increase in average segmentation accuracy. It shows that this augmentation method can boost accuracy and be easily applicable to any other segmentation models.

4
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

0
10
下载
预览

In this paper, we aim to improve the performance of semantic image segmentation in a semi-supervised setting in which training is effectuated with a reduced set of annotated images and additional non-annotated images. We present a method based on an ensemble of deep segmentation models. Each model is trained on a subset of the annotated data, and uses the non-annotated images to exchange information with the other models, similar to co-training. Even if each model learns on the same non-annotated images, diversity is preserved with the use of adversarial samples. Our results show that this ability to simultaneously train models, which exchange knowledge while preserving diversity, leads to state-of-the-art results on two challenging medical image datasets.

0
4
下载
预览

Sufficient supervised information is crucial for any machine learning models to boost performance. However, labeling data is expensive and sometimes difficult to obtain. Active learning is an approach to acquire annotations for data from a human oracle by selecting informative samples with a high probability to enhance performance. In recent emerging studies, a generative adversarial network (GAN) has been integrated with active learning to generate good candidates to be presented to the oracle. In this paper, we propose a novel model that is able to obtain labels for data in a cheaper manner without the need to query an oracle. In the model, a novel reward for each sample is devised to measure the degree of uncertainty, which is obtained from a classifier trained with existing labeled data. This reward is used to guide a conditional GAN to generate informative samples with a higher probability for a certain label. With extensive evaluations, we have confirmed the effectiveness of the model, showing that the generated samples are capable of improving the classification performance in popular image classification tasks.

0
4
下载
预览

In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF) -based framework, which integrates a semi-supervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semi-supervised GANs to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semi-supervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semi-supervised HSI classification.

0
3
下载
预览

In this paper, we describe how to apply image-to-image translation techniques to medical blood smear data to generate new data samples and meaningfully increase small datasets. Specifically, given the segmentation mask of the microscopy image, we are able to generate photorealistic images of blood cells which are further used alongside real data during the network training for segmentation and object detection tasks. This image data generation approach is based on conditional generative adversarial networks which have proven capabilities to high-quality image synthesis. In addition to synthesizing blood images, we synthesize segmentation mask as well which leads to a diverse variety of generated samples. The effectiveness of the technique is thoroughly analyzed and quantified through a number of experiments on a manually collected and annotated dataset of blood smear taken under a microscope.

0
4
下载
预览

The classification of acoustic environments allows for machines to better understand the auditory world around them. The use of deep learning in order to teach machines to discriminate between different rooms is a new area of research. Similarly to other learning tasks, this task suffers from the high-dimensionality and the limited availability of training data. Data augmentation methods have proven useful in addressing this issue in the tasks of sound event detection and scene classification. This paper proposes a method for data augmentation for the task of room classification from reverberant speech. Generative Adversarial Networks (GANs) are trained that generate artificial data as if they were measured in real rooms. This provides additional training examples to the classifiers without the need for any additional data collection, which is time-consuming and often impractical. A representation of acoustic environments is proposed, which is used to train the GANs. The representation is based on a sparse model for the early reflections, a stochastic model for the reverberant tail and a mixing mechanism between the two. In the experiments shown, the proposed data augmentation method increases the test accuracy of a CNN-RNN room classifier from 89.4% to 95.5%.

0
4
下载
预览

We address the problem of segmenting 3D multi-modal medical images in scenarios where very few labeled examples are available for training. Leveraging the recent success of adversarial learning for semi-supervised segmentation, we propose a novel method based on Generative Adversarial Networks (GANs) to train a segmentation model with both labeled and unlabeled images. The proposed method prevents over-fitting by learning to discriminate between true and fake patches obtained by a generator network. Our work extends current adversarial learning approaches, which focus on 2D single-modality images, to the more challenging context of 3D volumes of multiple modalities. The proposed method is evaluated on the problem of segmenting brain MRI from the iSEG-2017 and MRBrainS 2013 datasets. Significant performance improvement is reported, compared to state-of-art segmentation networks trained in a fully-supervised manner. In addition, our work presents a comprehensive analysis of different GAN architectures for semi-supervised segmentation, showing recent techniques like feature matching to yield a higher performance than conventional adversarial training approaches. Our code is publicly available at https://github.com/arnab39/FewShot_GAN-Unet3D

0
9
下载
预览

Deep learning has shown promising results in medical image analysis, however, the lack of very large annotated datasets confines its full potential. Although transfer learning with ImageNet pre-trained classification models can alleviate the problem, constrained image sizes and model complexities can lead to unnecessary increase in computational cost and decrease in performance. As many common morphological features are usually shared by different classification tasks of an organ, it is greatly beneficial if we can extract such features to improve classification with limited samples. Therefore, inspired by the idea of curriculum learning, we propose a strategy for building medical image classifiers using features from segmentation networks. By using a segmentation network pre-trained on similar data as the classification task, the machine can first learn the simpler shape and structural concepts before tackling the actual classification problem which usually involves more complicated concepts. Using our proposed framework on a 3D three-class brain tumor type classification problem, we achieved 82% accuracy on 191 testing samples with 91 training samples. When applying to a 2D nine-class cardiac semantic level classification problem, we achieved 86% accuracy on 263 testing samples with 108 training samples. Comparisons with ImageNet pre-trained classifiers and classifiers trained from scratch are presented.

0
4
下载
预览

Hashing has been a widely-adopted technique for nearest neighbor search in large-scale image retrieval tasks. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, the cost of annotating data is often an obstacle when applying supervised hashing to a new domain. Moreover, the results can suffer from the robustness problem as the data at training and test stage could come from similar but different distributions. This paper studies the exploration of generating synthetic data through semi-supervised generative adversarial networks (GANs), which leverages largely unlabeled and limited labeled training data to produce highly compelling data with intrinsic invariance and global coherence, for better understanding statistical structures of natural data. We demonstrate that the above two limitations can be well mitigated by applying the synthetic data for hashing. Specifically, a novel deep semantic hashing with GANs (DSH-GANs) is presented, which mainly consists of four components: a deep convolution neural networks (CNN) for learning image representations, an adversary stream to distinguish synthetic images from real ones, a hash stream for encoding image representations to hash codes and a classification stream. The whole architecture is trained end-to-end by jointly optimizing three losses, i.e., adversarial loss to correct label of synthetic or real for each sample, triplet ranking loss to preserve the relative similarity ordering in the input real-synthetic triplets and classification loss to classify each sample accurately. Extensive experiments conducted on both CIFAR-10 and NUS-WIDE image benchmarks validate the capability of exploiting synthetic images for hashing. Our framework also achieves superior results when compared to state-of-the-art deep hash models.

0
5
下载
预览

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: https://github.com/holgerroth/3Dunet_abdomen_cascade.

0
10
下载
预览
小贴士
相关论文
On Feature Normalization and Data Augmentation
Boyi Li,Felix Wu,Ser-Nam Lim,Serge Belongie,Kilian Q. Weinberger
10+阅读 · 2020年2月25日
Deep Co-Training for Semi-Supervised Image Segmentation
Jizong Peng,Guillermo Estrada,Marco Pedersoli,Christian Desrosiers
4+阅读 · 2019年10月30日
Quan Kong,Bin Tong,Martin Klinkigt,Yuki Watanabe,Naoto Akira,Tomokazu Murakami
4+阅读 · 2019年6月17日
Zilong Zhong,Jonathan Li,David A. Clausi,Alexander Wong
3+阅读 · 2019年5月12日
Red blood cell image generation for data augmentation using Conditional Generative Adversarial Networks
Oleksandr Bailo,DongShik Ham,Young Min Shin
4+阅读 · 2019年1月18日
Data Augmentation of Room Classifiers using Generative Adversarial Networks
Constantinos Papayiannis,Christine Evers,Patrick A. Naylor
4+阅读 · 2019年1月10日
Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning
Arnab Kumar Mondal,Jose Dolz,Christian Desrosiers
9+阅读 · 2018年10月29日
Ken C. L. Wong,Tanveer Syeda-Mahmood,Mehdi Moradi
4+阅读 · 2018年8月15日
Zhaofan Qiu,Yingwei Pan,Ting Yao,Tao Mei
5+阅读 · 2018年4月23日
Holger R. Roth,Hirohisa Oda,Xiangrong Zhou,Natsuki Shimizu,Ying Yang,Yuichiro Hayashi,Masahiro Oda,Michitaka Fujiwara,Kazunari Misawa,Kensaku Mori
10+阅读 · 2018年3月20日
相关VIP内容
最新BERT相关论文清单,BERT-related Papers
专知会员服务
38+阅读 · 2019年9月29日
相关资讯
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
19+阅读 · 2019年1月28日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
17+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top