2019年中国人工智能基础数据服务行业白皮书

2019 年 9 月 16 日 艾瑞咨询
2019年中国人工智能基础数据服务行业白皮书

人工智能丨白皮书

全文字数:7786字  精读时间:20分钟


核心摘要:

在经历了一段时期的野蛮生长之后,人工智能基础数据服务行业进入成长期,行业格局逐渐清晰。人工智能基础数据服务方的上游是数据生产和外包提供者,下游是AI算法研发单位,人工智能基础数据服务方通过数据处理能力和项目管理能力为其提供整体的数据资源服务,不过AI算法研发单位和AI中台也可提供一些数据处理工具,产业上下游普遍存在交叉。

2018年中国人工智能基础数据服务市场规模为25.86亿元,其中数据资源定制服务占比86%,预计2025年市场规模将突破113亿元。市场供给方主要由人工智能基础数据服务供应商和算法研发单位自建或直接获取外包标注团队的形式组成,其中供应商是行业主要支撑力量。

数据安全、采标能力、数据质量、管理能力、服务能力等仍是需求方的痛点,需要人工智能基础服务商有明确具体的安全管理流程、能够深入理解算法标注需求、可提供精力集中且高质量的服务、能够积极配合、快速响应需求方的要求。

随着算法需求越来越旺盛,依赖人工标注不能满足市场需求,因此增强数据处理平台持续学习能力,由机器持续学习人工标注,提升预标注和自动标注能力对人工的替代率将成趋势。 远期,越来越多的长尾、小概率事件所产生的数据需求增强,机器模拟或机器生成数据会是解决这一问题的良好途径,及早研发相应技术也将成为AI基础数据服务商未来的护城河。



人工智能基础数据服务行业概述

人工智能基础数据服务定义
意指为AI算法训练及优化提供数据采集和标注等形式的服务
人工智能基础数据服务指为AI算法训练及优化提供的数据采集、清洗、信息抽取、标注等服务,以采集和标注为主。 人工智能概念爆发伊始,算法、算力、数据就作为最重要的三要素被人们乐道,进入落地阶段,智能交互、人脸识别、无人驾驶等应用成为了最大的热门,AI公司开始比拼技术与产业的结合能力,而数据作为AI算法的“燃料”,是实现这一能力的必要条件,因此,为机器学习算法训练、优化提供数据采集、标注等服务的人工智能基础数据服务成为了这一人工智能热潮中必不可少的一环。 如果说计算机工程师是AI的老师,那基础数据服务就是老师手中的教材。

人工智能基础数据服务发展历程
行业进入成长期,行业格局逐渐清晰
伴随国内人工智能热潮爆发,大量的AI公司拿到融资,为了不断提高算法精度,数据采标需求也空前爆发,一度催生了行业的繁荣。 但早期的AI基础数据服务门槛较低,玩家鱼龙混杂,使行业标准模糊、服务质量参差不齐。 随着竞争加快,AI公司对训练数据的质量要求也不断提高,并且当产业落地成为主旋律,需求方对垂直场景的定制化数据采标需求成为主流,众多小型AI基础数据服务公司从数据质量和采标能力上达不到要求,或被淘汰,或依附大平台,行业格局逐渐清晰,头部公司实力逐渐凸显。 随着算法需求越来越旺盛,目前机器辅助标注、人工主要标注的手段需要改进提升,增强数据处理平台持续学习和自学习能力,增加机器能够标注维度、提升机器处理数据的精度,由机器承担主要标注工作将成为下一阶段的行业重心。 未来,越来越多的长尾、小概率事件所产生的数据需求增强,人机协作标注的模式性价比不足,机器模拟或机器生成数据会是解决这一问题的良好途径,及早研发相应技术也将成为AI基础数据服务商未来的护城河。

人工智能基础数据服务的行业价值
目前有监督的深度学习是主流,标注数据是其学习根本
人工智能是研究如何通过机器来模拟人类认知能力的科学,机器学习是现阶段实现人工智能的主要手段。 机器学习方法通常是从已知数据中学习规律或者判断规则,建立预测模型,其中,深度学习可以通过对低层特征的组合,形成更加抽象的高层属性类别,自动从信息中学习有效的特征并进行分类,而无需人为选取特征。 凭借自动提取特征、神经网络结构、端到端学习等优势,深度学习在图像和语音领域学习效果最佳,是当今最热门的算法架构。 在实际应用中,深度学习算法多采用有监督学习模式,即需要标注数据对学习结果进行反馈,在大量数据训练下,算法错误率能大大降低。 现在的人脸识别、自动驾驶、语音交互等应用都采用这类方法训练,对于各类标注数据有着海量需求,可以说数据资源决定了当今人工智能的高度。 由于应用有监督学习的AI算法对于标注数据的需求远大于现有的标注效率和投入预算,无监督或仅需要少量标注数据的弱监督学习、小样本学习成为了科学家探索的方向,但目前无论从学习效果和使用边界来看,均不能有效替代有监督学习,人工智能基础数据服务将持续释放其对于人工智能的基础支撑价值。

人工智能基础数据服务的主要产品形式
定制服务为主要服务形式,数据集产品集中于语音类赛道
目前,国内AI基础数据服务主要为数据集产品和数据资源定制服务,数据集产品往往是AI基础数据服务商根据自身积累产出的标准数据集,以语音数据集为主,主体偏普通话语音、英文语音、方言语音等; 为保证算法优势,客户更多采用定制化服务,由客户提出具体需求,数据服务商或直接对客户提供的数据进行标注、或对数据进行采集并标注。 大型的需求方,为保障数据的安全,往往提供Web形式的自有标注平台给执行方,以此对整体项目进行把控,也有一些AI基础数据服务商向客户提供私有化平台建设服务,或将自身平台与甲方系统兼容; 除以上两种形式外,部分AI基础数据服务商还向算法服务进行拓展,提供算法训练、模型搭建等服务。

人工智能基础数据服务的发展背景

人工智能经济崛起为基础数据服务提供长期向好的基本面

2010年语音识别和计算机视觉领域产生重大突破,国内开始萌生AI概念。到2015年,国内迎来人工智能创业热潮,独角兽不断涌现,融资记录被不断打破。2012年-2019年8月人工智能领域共发生2787件投融资事件,总融资额达4740亿元,人工智能成为最炙手可热的融资热点,百度、阿里、腾讯、京东、华为等科技企业也纷纷加注。2017年至今,产业落地成为AI行业的主流,人工智能赋能实体经济保持高速发展态势,涉及行业包括安防、金融、零售、交通、教育、医疗、营销、工业、农业、企服等众多领域。下游的爆发式增长为人工智能基础数据服务的发展提供了长期向好的基本面。

数据量呈指数式增长,非结构化数据的应用依赖于清洗标注
PC、互联网、消费级移动设备的兴起宣告了数据时代的来临,物联网的发展更使线下业务产生的大量数据被采集起来,数据量呈指数式增长,据IDC统计,全球每年生产的数据量将从2016年的16.1ZB猛增至2025年的163ZB,其中80%-90%是非结构化数据。 过去计算机主要处理结构化数据,人工智能模型却以处理非结构化数据见长,但“玉不琢不成器”,数据经过清洗与标注才能被唤醒价值,这就产生了源源不断的清洗与标注需求。 在我国,每年需要进行标注的语音数据超过200万小时,图片则有数亿张。


人工智能基础数据服务市场现状

人工智能基础数据服务产业链
AI基础数据服务方是行业核心环节

人工智能基础数据服务产业图谱
产业上下游普遍存在交叉
AI基础数据服务方的上游是数据生产和外包提供者,下游是AI算法研发单位,AI基础数据服务方通过数据处理能力和项目管理能力为其提供整体的数据资源服务。 AI基础数据服务方整体有两大类,一种是具备自有的标注基地或全职标注团队,这类企业也参与产业上游部分直接提供产能资源,另一种是依靠众包或外包模式,专注于数据产品的开发与项目执行。 下游部分AI公司拥有自己的标注工具,也可通过AI中台获取一些通用标注工具,同时一些数据需求大的企业还孵化了自己的数据服务团队。 整体而言,产业上下游普遍存在交叉关系。

人工智能基础数据服务行业投融资
融资规模集中于千万量级,早期融资项目居多
从融资规模来看,人工智能基础数据服务市场的融资多集中在千万级别。 从时间维度来看,2015年人工智能基础数据服务商获得的融资金额相对较高,标志着行业初露头角,受到资本的认可。 从获得融资的企业数量来看,目前获得融资的玩家并不多,资本市场表现的活跃度不高。 从融资轮次来看,大部分融资仍然集中于早期融资,目前上市的企业仅挂牌新三板的数据堂一家(不考虑科技公司内部孵化的基础数据服务商)。 人工智能基础数据服务毛利率普遍较高,但为保持与人工智能市场前沿算法的匹配,需要投入大量研发成本进行数据处理平台与工具的研发升级,因此对融资仍有较强依赖。

人工智能基础数据服务行业商业模式
生产、获客、部署合力驱动发展
人工智能基础数据服务行业是典型的To B型业务,商业模式较为稳定。 在生产方面,主要通过自建标注基地或标注团队、搭建众包平台、采购供应商外包服务(BPO)等模式实现生产运营,大多企业主要采取众包与外包模式,百度数据众包、倍赛等企业自建标注基地或全职标注团队,对于培训较高素质工作人员、完善团队管理有积极意义; 在获客方面,主要通过口碑传播、学术会议与展会及代理渠道等模式进入市场,对销售人员熟悉市场趋势、客户需求的要求较高; 在实施交付方面,有私有化部署和公有部署两类,能够较为灵活地应对客户对数据安全、交付周期与成本的个性化需求。

人工智能基础数据服务市场规模
2025年市场规模将突破百亿,行业年复合增长率为23.5%
2018年中国人工智能基础数据服务市场规模为25.86亿元,其中数据资源定制服务占比86.2%,数据集产品占比12.9%,其他数据资源应用服务占比0.9%; 行业年复合增长率为23.5%,预计2025年市场规模将突破110亿元。 从整体增速来看,行业发展较为稳健,下游人工智能行业持续发力将形成长期利好。

人工智能基础数据服务细分结构
纯标注服务为主体,由供应商提供服务占79%
2018年中国人工智能基础数据服务市场以语音、视觉、NLP领域的标注服务为主,同时提供采集与标注服务占比较少,这是由于生数据由需求方提供的情况较多,但这并不意味着市场中数据采集需求弱,相反,人工智能技术落地后产生了大量新兴垂直领域的数据需求,然而这些数据采集难度大,能够提供相关采集工具和服务的供应商将获取竞争优势。 市场供给方主要由企业自建或直接获取外包团队的形式以及供应商组成,又以供应商为行业主要支撑力量,占比79%

人工智能基础数据服务市场格局
行业将提升至较高集中度,CR5占26%市场份额
目前人工智能基础数据服务行业CR5占26%市场份额,行业集中度较为适中,既非寡占型市场也非充分竞争市场,这一方面是由于百度数据众包、海天瑞声、数据堂等企业进入市场较早,积累了较多客户资源,另一方面则是由于下游企业之前多采用公开数据集训练模型,对数据的高精度要求由来尚短,受生态传导效应滞后影响,市场门槛还不显著,资金与研发实力较为薄弱的中小企业还有较强的发展土壤。 然而未来,随着下游企业发展壮大,直接使用外包团队成本低廉、数据安全可控性强,一些基础性需求将由下游企业自给自足,外部的数据服务商现有的存量市场面临下降,因此必须承担高难度、前沿独特性任务,这就要求其自身投入高精度、专业化数据处理工具的研发和人工智能算法基础研究,以把握客户需求,开拓增量市场,因此资金与研发实力成为较高行业门槛,同时受近年资本市场冷却影响,一批中小型厂商面临业务收缩,再者部分厂商如倍赛开始在业内并购,参考海外数据服务市场发展情况(海外行业巨头Appen多次并购其他企业),并购也将成为市场趋势,多种因素叠加影响下,行业集中度将提升。

人工智能基础数据服务场景分析

视图基础数据服务市场现状

人像与OCR数据是视图基础数据服务的主流

在不考虑自动驾驶的前提下,2018年视图基础数据服务市场达到6.6亿元,人像与OCR数据是视图基础数据服务的主流,尤其人像数据占市场的42.9%。OCR占27%,其他的人体识别数据、商品识别数据、工业质检数据、医学影像数据及其他新场景数据等较为分散,合计占市场30.1%。

视图基础数据服务技术趋势
针对算法研发方向判断数据需求,挖掘增量市场
按照数据使用方向,可以划分为新算法模型搭建与研发、在已有算法基础上增加新模块、解决方案交付过程中定制优化等三类,其中新算法模型搭建与研发和在已有算法基础上增加新模块类型的数据需求是可以根据相应机器视觉算法的前沿研发方向来判断预测的。 例如,就智慧城市场景而言,针对汉族的人脸识别和视频结构化已较为成熟,在实际应用场景中还需针对少数民族和其他人种进行优化以提升整体算法准确率,此外,跨镜追踪成为场景研发热点,相应的跨摄像头数据如何标注对算法训练也会产生较大影响,再及,深度相机可以帮计算机读懂三维立体的监控视频,还能够较好地解决复杂光照条件下视图数据采集的问题,也将在未来成为重要的研发方向,综上,多民族、多人种数据、跨摄像头数据、3D数据的采集与标注服务将为视图基础数据服务市场的发展带来增量空间,OCR、手机、零售等其他领域也同理可针对算法研发方向挖掘增量市场。

自动驾驶基础数据服务应用场景
算法尚未成熟,对数据有长期需求,且缺口仍在
L3级别以上的自动驾驶系统主要有感知、定位、预测、决策和控制五部分,其对于计算机视觉技术的需求度远高于ADAS,系统需要对雷达、摄像头等传感器采集的点云和图像数据进行抽取、处理和融合,构建车辆行驶环境,为预测和决策做依据,这对于算法的准确性和实时性有极大考验。 目前自动驾驶的视觉技术主要应用有监督的深度学习,是基于已知变量和因变量推导函数关系的算法模型,需要大量的标注数据对模型进行训练和调优。 在世界级无人驾驶大赛中,主办方往往提供近亿张图片、数十万张标注图片供参赛团队训练使用; 在路测或真实道路驾驶时,如人车混杂、分布稠密、行为多变等复杂环境问题更需要海量的真实路况数据不断对算法进行优化,才能保障无人驾驶车辆正常可用。 如今国内自动驾驶飞速发展,AI公司、科技公司、高精地图厂商、车厂等参与者众多,该领域的数据采集和标注需求已经成为AI基础数据服务的主要项目之一,且自动驾驶算法应用仍待优化,数据需求缺口仍在,市场远未饱和。

自动驾驶基础数据服务市场现状
2025年采标规模将超24亿,科技公司和车厂是主要需求方
自动驾驶基础数据主要是道路交通图像、障碍物图像、车辆行驶环境图像等,需求方以科技公司、汽车厂商和高精地图厂商为主,2018年自动驾驶行业基础数据服务规模为5.76亿元,预计2025年将超24亿元,三方规模占比分别为49%、47.2%和3.8%,行业数据总任务量超一亿张,2D图像标注与3D点云标注任务量基本为2:1。 其中高精地图厂商算法较为成熟,数据自动化标注程度可达90%左右,外包需求较少; 以百度、图森未来为代表的自动驾驶科技公司一直是该领域基础数据服务的主要买方,平均各家算法训练图像数据累积需求在千万级以上,随着落地项目进程加快,将会有更多细分场景的需求产生; 近几年,汽车厂商在ADAS和自动驾驶方向的投入明显,上汽、吉利等厂商年投入均可达数亿元,对于数据的采集和标注需求也逐年增加,预计未来3年中,汽车厂商将成为需求主力。

智能交互基础数据服务市场现状
远场语音交互成为主流需求,中文类数据仍占据市场核心
2018年语音交互相关数据服务市场规模达到13.5亿元。 语音交互主要分为近场交互、中场交互和远场交互,以智能影音家居、可交互机器人和车机为代表的中远场交互类数据服务需求合计占到智能交互基础数据服务的68%,成为当前智能交互基础数据服务的主流需求,因此针对远场语音交互的低噪声环境服务具有较强发展潜力和议价能力。 在服务语种上,中文(含方言)服务占据71%的市场份额,外语种资源相对稀缺,采集和标注难度较大,成本相对更高,目前占29%的市场份额。

智能交互基础数据服务技术趋势
实现跨语音识别、语义理解的复合数据标注
目前企业在智能交互系统的建设中,对单纯的语音识别或合成方面技术能力相对较完善,而在上下文理解、多轮对话、情绪识别、模糊语义识别、意图判断等方面的研发痛点更强,根据智能交互系统算法的发展,迭代并设计符合算法需求的NLP数据产品,有助于从数据层面推动智能交互系统的发展。 特别的,对话系统的效果对标注数据的质量和规模依赖性很强,但目前受标注数据和模型能力的双重制约,对话流程还无法对语音、语义整个交互流程打通,而实现跨语音识别、语义理解的复合数据标注可以帮助减轻语音信息与文本信息之间的信息误传导,对整个对话流程效果增强能够产生积极影响,将增加智能交互基础数据服务探索的可能性。

人工智能基础数据服务需求分析

人工智能基础数据服务客户定位

客户分为AI公司、科技公司、科研机构、行业企业四类

从需求方来看,AI公司和科技公司占主要份额,AI公司更聚焦于视觉、语音等某一类型的基础数据服务,而科技公司结合集团优势,向人工智能整体发力,不同部门会产生多类型数据需求,科研机构需求占比较小。此外传统意义上的行业企业,如汽车厂商、手机品牌商、安防厂商等传统企业围绕自身业务进行技术拓展,也开始产生AI基础数据需求,并且量级逐渐增大,未来将释放更多市场空间。

人工智能基础数据服务核心需求类型
AI应用三大阶段,对基础数据服务产生差异化需求
企业应用人工智能算法要经历研发、训练和落地三个阶段,不同阶段对于AI基础数据服务也有差异化需求。 研发需求是新算法研发拓展时产生的数据需求,一般量级较大,初期多采用标准数据集产品训练,中后期则需要专业的数据定制采标服务; 训练需求是通过标注数据对已有算法的准确率、鲁棒性等能力进行优化,是市场中的主要需求,以定制化服务为主,对算法的准确性有较高要求; 落地场景的业务需求中算法较为成熟,涉及的数据采集和标注更贴合具体业务,如飞机保养中的涂料识别数据等,对于标注能力和供应商主动提出优化意见的服务意识有较强要求。

人工智能基础数据服务需求痛点
五大需求痛点决定AI基础数据服务商的服务标准
目前需求方在选择数据服务时往往会遇到数据安全、采标能力、数据质量、管理能力、服务能力等痛点。 对于数据安全,需求方希望基础数据服务商有明确具体的安全管理流程,对数据传输、存储,以及结项后的数据销毁等环节比较重视。 在采标能力方面,需求方算法越来越贴近业务,希望数据服务商对于自动驾驶、工业等有一定门槛的领域有采集能力,并且能理解客户意图,配合标注,甚至可以提出标注建议; 根据市场反应,大多数数据服务公司首次交付项目时,数据的准确率普遍偏低,都需要一到两次的返工,故需求方对无效数据少、准确率高的公司更加青睐。 对于执行效率,一般AI基础数据服务商都能在项目周期内完成,但管理能力较弱的公司很难在兼顾多个项目时做到精力集中、高质量地服务客户,同时执行团队的素养与信誉也是重要影响因素。 服务意识是一项软实力,需要AI基础数据服务商能够积极配合、快速响应需求方要求。

人工智能基础数据服务趋势及建议

人工智能基础数据服务发展建议

企业由被动执行向主动服务的意识跃迁

单纯依据客户各个项目的诉求进行数据采集和标注属于被动执行,主观能动性低、行业边界有限,各家公司的产品和服务趋于同质化、竞争呈胶着状态,制约着AI基础数据服务的发展。通过对需求方的研究,发现除安全性、质量、效率等核心关注点之外,越来越多的需求方对数据服务公司产生了主动服务的需求,希望数据公司能够更懂算法技术、更懂需求场景,甚至能参与到算法的研发中来,给出数据采标方面的优化建议,这也为数据服务商形成差异化竞争带来了契机,尤其是在AI落地阶段,在垂直场景中能够形成一套集调研、咨询、设计、采集、标注为一体的AI基础数据整体解决办法,将在收入和业务边界上实现突破。

2019年中国人工智能产业发展分析

艾瑞:智能制造系统的灵魂——智能“神经系统”

新型商业智能助力应用场景拓展与企业业务转型

搜索艾瑞过往报告,请点击进入小程序


点击阅读原文,查看完整报告

登录查看更多
21

相关内容

主题: 2019年人工智能的发展

摘要:

人工智能是一个很宽泛的概念,概括而言是对人的意识和思维过程的模拟,利用机器学习和数据分析方法赋予机器类人的能力。人工智能将提升社会劳动生产率,特别是在有效降低劳动成本、优化产品和服务、创造新市场和就业等方面为人类的生产和生活带来革命性的转变。据Sage预测,到2030年人工智能的出现将为全球GDP带来额外14%的提升,相当于15.7万亿美元的增长。全球范围内越来越多的政府和企业组织逐渐认识到人工智能在经济和战略上的重要性,并从国家战略和商业活动上涉足人工智能。全球人工智能市场将在未来几年经历现象级的增长。据中国产业信息网和中国信息通信研究院数据,世界人工智能市场将在2020年达到6800亿元人民币,复合增长率达26.2%,而中国人工智能市场也将在2020年达到710亿元人民币,复合增长率达44.5%。

我国发展人工智能具有多个方面的优势,比如开放的市场环境、海量的数据资源、强有力的战略引领和政策支持、丰富的应用场景等,但仍存在基础研究和原创算法薄弱、高端元器件缺乏、没有具备国际影响力的人工智能开放平台等短板。此份报告不但对人工智能关键技术(计算机视觉技术、自然语言处理技术、跨媒体分析推理技术、智适应学习技术、群体智能技术、自主无人系统技术、智能芯片技术、脑机接口技术等)、人工智能典型应用产业与场景(安防、金融、零售、交通、教育、医疗、制造、健康等)做出了梳理,而且同时强调人工智能开放平台的重要性,并列举百度Apollo开放平台、阿里云城市大脑、腾讯觅影AI辅诊开放平台、科大讯飞智能语音开放创新平台、商汤智能视觉开放创新平台、松鼠AI智适应教育开放平台、京东人工智能开放平台NeuHub、搜狗人工智能开放平台等典型案例呈现给读者。最后,列举国内外优秀的人工智能公司与读者共勉。随着技术的进步、应用场景的丰富、开放平台的涌现和人工智能公司的创新活动,我国整个人工智能行业的生态圈也会逐步完善,从而为智慧社会的建设贡献巨大力量。

成为VIP会员查看完整内容
2
92

德勤发布中国人工智能产业白皮书,内容关于人工智能行业综述,人工智能商业化应用,以及中国主要人工智能产业发展区域及定位。

主要发现

  1. 中国人工智能产业发展迅速, 但整体实力仍落后于美国。中国人工智能产业发展迅速, 2018年中国人工智能市场规模有望超过300亿元人民币。人工智能企业数量超过1000家,位列全球第二。本次人工智能浪潮以从实验室走向商业化为特征, 其发展驱动力主要来自计算力的显著提升、 多方位的政策支持、 大规模多频次的投资以及逐渐清晰的用户需求。与此同时,中国处于人工智能发展初期, 基础研究、 芯片、 人才方面的多项关键指标与美国差距较大。

  2. 中国企业价值链布局侧重技术层和应用层, 对需要长周期的基础层关注度较小。人工智能产业链分为基础层(芯片、 算法框架)、 技术层(计算机视觉、自然语义理解、 语音识别、 机器学习) 和应用层(垂直行业/精确场景)。中国企业布局比较偏好技术相对成熟、 应用场景清晰的领域, 对基础层关注度较小。瞄准AI专用芯片或将为中国企业另辟蹊径。

3.科技巨头生态链博弈正在展开,创业企业则积极发力垂直行业解决方案,深耕巨头的数据洼地, 打造护城河。科技巨头构建生态链, 已经占据基础设施和技术优势。创业企业仅靠技术输出将很难与巨头抗衡, 更多的创业企业将发力深耕巨头的数据洼地(金融、 政府事务、 医疗、 交通、 制造业等),切入行业痛点, 提供解决方案, 探索商业模式。

  1. 政府端是目前人工智能切入智慧政务和公共安全应用场景的主要渠道,早期进入的企业逐步建立行业壁垒, 未来需要解决数据割裂问题以获得长足发展。各地政府的工作内容及目标有所差异, 因而企业提供的解决方案并非是完全标准化的,需要根据实际情况进行定制化服务。由于政府一般对于合作企业要求较高,行业进入门槛提高, 强者恒强趋势明显。

  2. 人工智能在金融领域的应用最为深入, 应用场景逐步由以交易安全为主向变革金融经营全过程扩展。传统金融机构与科技企业进行合作推进人工智能在金融行业的应用, 改变了金融服务行业的规则, 提升金融机构商业效能,在向长尾客户提供定制化产品的同时降低金融风险。

  3. 医疗行业人工智能应用发展快速,但急需建立标准化的人工智能产品市场准入机制并加强医疗数据库的建设。人工智能的出现将帮助医疗行业解决医疗资源的短缺和分配不均的众多民生问题。但由于关乎人的生命健康, 医疗又是一个受管制较严的行业。人工智能能否如预期广泛应用, 还将取决于产品商业化过程中如何制定医疗和数据监管标准。

  4. 以无人驾驶技术为主导的汽车行业将迎来产业链的革新。传统车企的生产、 渠道和销售模式将被新兴的商业模式所替代。新兴的无人驾驶解决方案技术公司和传统车企的行业边界将被打破。随着共享汽车概念的兴起。无人驾驶技术下的共享出行将替代传统的私家车的概念。随着无人驾驶行业规范和标准的制定, 将衍生出更加安全和快捷的无人货运和物流等新兴的行业。

  5. 人工智能在制造业领域的应用潜力被低估,优质数据资源未被充分利用。制造业专业性强, 解决方案的复杂性和定制化要求高, 所以人工智能目前主要应用在产品质检分拣和预测性维护等易于复制和推广的领域。然而, 生产设备产生的大量可靠、 稳定、 持续更新的数据尚未被充分利用, 这些数据可以为人工智能公司提供优质的机器学习样本, 解决制造过程中的实际问题。

  6. 人工智能加速新零售全渠道的融合,传统零售企业与创业企业结成伙伴关系, 围绕人、 货、 场、 链搭建应用场景。人工智能在各个零售环节多点开花, 应用场景碎片化并进入大规模实验期。传统零售企业开始布局人工智能, 将与科技巨头在应用大数据和人工智能领域同台竞技, 意味零售商将更加积极与创业公司建立伙伴关系。

  7. 政策与资本双重驱动推动人工智能产业区域间竞赛, 京沪深领跑全国, 杭州发展逐步加速。京津冀、 珠三角、长三角以及西部川渝地区成为人工智能企业聚集地区。北京、 上海、 深圳牢牢占据人工智能城市实力第一梯队的位置, 广州的大型企业与初创企业数量较少, 杭州主要依靠阿里巴巴,因而属于第二梯队, 重庆则受到技术与人才基础限制处于第三梯队。

  8. 各地政府以建设产业园的方式发挥人工智能产业在推动新旧动能转换中的作用。人工智能产业园呈现多点开花、 依托原有高科技产业园以及与原有园区企业产生联动效应的特点。但由于建设速度过快, 园区也出现了空心化与人才缺口的问题。

12.杭州未来科技城抓住人工智能产业快速发展的机会并取得显著成绩,未来可以从人才、 技术、 创新三要素入手进一步打造产业竞争力。推出培养、 吸引、 保留人才的具体措施, 建立具有成长性的人才库;通过完善产业链布局, 发现高价值技术企业并了解企业诉求。提高对技术型企业的招商效率;从创新主体、创新资源和创新环境三个层次聚集创新要素, 打造利于企业创新创业的有利条件。

成为VIP会员查看完整内容
1
144

前言: 当前,我国迎来了世界新一轮科技革命与中国转变发展方式的历史性交汇期, 既面临着千载难逢的历史机遇,又面临着差距拉大的严峻挑战。科技作为人类社会 发展的源动力,塑造和影响着全球政治经济格局,持续主导世界变革,成为我国应 对挑战和把握百年发展机遇的必然选择。以史为鉴,真正能够推动人类社会进步、 改变世界进程、引领人类生活发生根本变革的科技,都是那些需要长期研发投入、 持续积累的高精尖原创技术,对产业的发展具有较强的引领和支撑作用的技术。 2010 年中科院西安光机所米磊博士将这类技术定义为“硬科技”,希望新时期国家 和社会能够重视硬科技、发展硬科技、掌握硬科技。2018 年 12 月 6 日,李克强总理 在国家科技领导小组第一次会议上强调“突出‘硬科技’研究,努力取得更多原创 成果”。2019 年 10 月 16 日,科技部火炬中心组织召开硬科技发展工作座谈会,研 究推进硬科技发展工作。 放眼全球,各国纷纷将目光投向科技,硬科技发展热潮正在全球蓬勃兴起。 2019 年全球在人工智能、生物技术、光电芯片等十大技术领域取得突破性进展,全 球首次合成纯碳 C18 环,为当前计算机芯片突破硅基半导体器件物理极限提供全新 思路 ; 科学家 3D 打印出会“呼吸”的人造器官,未来将造福器官移植患者 ; 世界首 款异构融合类脑芯片问世,通用型人工智能发展迈出重要一步。2019 年全球主要城 市七大硬科技创新综合指数 TOP15 中,中国城市占 8 个席位,占据半壁江山,其中 东京位居第一,北京紧随其后,纽约名列前三。我国科技创新活动活跃度领先全球, 呈现多个行业并发、多种类型并举、多数企业家重视的良好局面。 聚焦中国,硬科技成为衡量和支撑区域产业竞争力的最关键要素,对于城市产 业创新综合实力的作用日益显现,上海全力打造全球顶级生物医药产业集聚区、深 圳打造智能制造产业创新中心、西安打造全球硬科技之都。在 2019 年国内城市产业 创新综合排名中,北京以绝对优势领跑全国,上海和深圳处在第二梯队,作为“硬 科技”概念的发源地,2019 年西安表现亮眼,产业创新综合能力位居全国第四,引 领第三梯队。 展望未来,硬科技作为人类社会发展的核心动力,将驱动人类进入一个全新的 发展阶段,人类生产组织方式、社会组织方式、生活方式将发生重大变化。硬科技 事关人类社会整体进步和人类共同福祉的提升,需要各国以宏大的全球视野和人类 共同的担当,携手构建人类命运共同体。

成为VIP会员查看完整内容
1
43

摘要: 当前,全球大数据正进入加速发展时期,技术产业与应用创新不断迈向新高度。大数据通过数字化丰富要素供给,通过网络化扩大组织边界,通过智能化提升产出效能,不仅是推进网络强国建设的重要领域,更是新时代加快实体经济质量变革、效率变革、动力变革的战略依托。 本白皮书是继《大数据白皮书(2014年)》、《大数据白皮书(2016年)》、《大数据白皮书(2018年)》之后中国信通院第四次发布大数据白皮书。本白皮书在前三版的基础上,聚焦一年多来大数据各领域的进展和趋势,梳理主要问题并进行展望。在技术方面,重点探讨了近两年最新的大数据技术及其融合发展趋势;在产业方面,重点讨论了我国大数据产品的发展情况;在数据资产管理方面,介绍了行业数据资产管理、数据资产管理工具的最新发展情况,并着重探讨了数据资产化的关键问题;在安全方面,从多种角度分析了大数据面临的安全问题和技术工具。希望本白皮书的分析可以对政府和行业提供参考。

目录:

一、国际大数据发展概述. 1

  • (一)大数据战略持续拓展. 1
  • (二)大数据底层技术逐步成熟. 2
  • (三)大数据产业规模平稳增长. 3
  • (四)大数据企业加速整合. 5
  • (五)数据合规要求日益严格. 6

二、融合成为大数据技术发展的重要特征. 8

  • (一)算力融合:多样性算力提升整体效率. 8
  • (二)流批融合:平衡计算性价比的最优解. 9
  • (三)TA融合:混合事务/分析支撑即时决策. 10
  • (四)模块融合:一站式数据能力复用平台. 11
  • (五)云数融合:云化趋势降低技术使用门槛. 11
  • (六)数智融合:数据与智能多方位深度整合. 12

三、大数据产业蓬勃发展. 14

  • (一)大数据产业发展政策环境日益完善. 14
  • (二)各地大数据主管机构陆续成立. 17
  • (三)大数据技术产品水平持续提升. 20
  • (四)大数据行业应用不断深化. 22

四、数据资产化步伐稳步推进. 25

  • (一)数据:从资源到资产. 25
  • (二)数据资产管理理论体系仍在发展. 26
  • (三)各行业积极实践数据资产管理. 27
  • (四)数据资产管理工具百花齐放. 29
  • (五)数据资产化面临诸多挑战. 31

五、数据安全合规要求不断提升. 35

  • (一)数据相关法律监管日趋严格规范. 35
  • (二)数据安全技术助力大数据合规要求落地. 36
  • (三)数据安全标准规范体系不断完善. 39

六、大数据发展展望. 41

成为VIP会员查看完整内容
1
79

德勤科技、传媒和电信行业联合推出《全球人工智能发展白皮书》。《全球人工智能发展白皮书》深入研究人工智能技术步入商业化阶段后,在全球各主要城市的创新融合应用概况,以及其将对金融、教育、数字政务、医疗、无人驾驶、零售、制造业、智慧城市等各行业带来的深刻变革。

成为VIP会员查看完整内容
3
124
小贴士
相关资讯
百度研究院|2020年10大人工智能科技趋势
专知
6+阅读 · 2019年12月24日
IDC与百度联合发报告:预测2019年人工智能十大趋势
全球人工智能
3+阅读 · 2018年12月21日
2018年中国供应链金融行业研究报告
艾瑞咨询
6+阅读 · 2018年11月20日
IDC发布对话式人工智能白皮书|附下载
人工智能学家
6+阅读 · 2018年3月20日
权威发布:新一代人工智能发展白皮书(2017)
全球人工智能
7+阅读 · 2018年2月25日
海康威视AI Cloud助力平安城市4.0建设
海康威视
3+阅读 · 2018年1月17日
2017全球大数据产业八领域典型公司盘点分析
人工智能学家
3+阅读 · 2017年12月6日
【人工智能】人工智能5大商业模式
产业智能官
9+阅读 · 2017年10月16日
相关VIP内容
专知会员服务
63+阅读 · 2020年5月22日
2020年中国《知识图谱》行业研究报告,45页ppt
专知会员服务
147+阅读 · 2020年4月18日
新时期我国信息技术产业的发展
专知会员服务
42+阅读 · 2020年1月18日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
144+阅读 · 2019年12月23日
2019中国硬科技发展白皮书 193页
专知会员服务
43+阅读 · 2019年12月13日
【大数据白皮书 2019】中国信息通信研究院
专知会员服务
79+阅读 · 2019年12月12日
相关论文
Mengyue Yang,Qingyang Li,Zhiwei Qin,Jieping Ye
5+阅读 · 2020年4月2日
Suyu Ge,Chuhan Wu,Fangzhao Wu,Tao Qi,Yongfeng Huang
19+阅读 · 2020年3月31日
Liuyi Yao,Zhixuan Chu,Sheng Li,Yaliang Li,Jing Gao,Aidong Zhang
78+阅读 · 2020年2月5日
SlowFast Networks for Video Recognition
Christoph Feichtenhofer,Haoqi Fan,Jitendra Malik,Kaiming He
4+阅读 · 2019年4月18日
Sequential Attacks on Agents for Long-Term Adversarial Goals
Edgar Tretschk,Seong Joon Oh,Mario Fritz
4+阅读 · 2018年7月5日
Andrew Collins,Joeran Beel,Dominika Tkaczyk
3+阅读 · 2018年5月30日
Yinhao Li,Awa Alqahtani,Ellis Solaiman,Charith Perera,Prem Prakash Jayaraman,Boualem Benatallah,Rajiv Ranjan
10+阅读 · 2018年5月10日
Dinesh Raghu,Nikhil Gupta, Mausam
3+阅读 · 2018年5月3日
Peter Shaw,Jakob Uszkoreit,Ashish Vaswani
14+阅读 · 2018年3月6日
Zuxuan Wu,Ting Yao,Yanwei Fu,Yu-Gang Jiang
9+阅读 · 2018年2月22日
Top