《AutoML:方法,系统,挑战》新书免费下载

2019 年 5 月 29 日 极市平台
《AutoML:方法,系统,挑战》新书免费下载

极市正在推出CVPR2019的专题直播分享会邀请CVPR2019的论文作者进行线上直播,分享优秀的科研工作和技术干货,也欢迎各位小伙伴自荐或推荐优秀的CVPR论文作者到极市进行技术分享~

本周四(5月30日)晚,帝国理工学院计算机系IBUG组博士生邓健康,将为我们分享:ArcFace 构建高效的人脸识别系统(CVPR2019,公众号回复“42”即可获取直播详情。


本文转自公众号新智元


【导读】自动机器学习AutoML方面的新书《AutoML:方法,系统,挑战》最近正式出版了,而且还有完整书籍的免费下载!本书详细讲解了 AutoML 系统背后的基础知识,并对当前 AutoML 系统进行了深入描述。


近日,由Frank Hutter, Lars Kotthoff, Joaquin Vanschoren合作撰写的新书《AutoML:方法,系统,挑战》(Automated Machine Learning: Methods, Systems, Challenges)正式出版了!而且,作者免费开放完整书籍下载。


下载地址:

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book.pdf


本书详细讲解了 AutoML 系统背后的基础知识、对当前可用的 AutoML 系统进行了深入描述,包括Auto-WEKA、Hyperopt-Sklearn、Auto-sklearn、Auto-Net等,最后分析了目前为止的所有AutoML挑战赛。


本书纸质版也已经由Springer出版。


以下是三位作者的简介:


Frank Hutter


Frank Hutter:弗莱堡大学计算机科学系教授,机器学习实验室主任;主要从事人工智能、机器学习和自动化算法设计等的研究。


Lars Kotthoff


Lars Kotthoff:怀俄明大学计算机科学系助理教授,对建模和解决挑战性问题的创新方法感兴趣,并致力于将这些方法应用于现实世界。


Joaquin Vanschoren


Joaquin Vanschoren:荷兰埃因霍温理工大学(TU/e)机器学习助理教授。他的研究重点是机器学习的自动化,致力于构建学习如何学习的AI系统。


全书目录如下:



第1部分:AutoML方法


本部分概述了AutoML 系统背后的共同基础技术。


第1章:超参数优化。

第2章:元学习。

第3章:神经结构搜索。


第2部分: AutoML 系统


本部分涵盖对广泛可用的自动化系统的深入描述,这些系统可用于开箱即用的有效机器学习。


第4章:Auto-WEKA 

第5章:Hyperopt-Sklearn 

第6章:Auto-sklearn:高效稳健的自动机器学习

第7章:Auto-Net:走向自动调参的神经网络

第8章:TPOT:一个自动化机器学习的工具

第9章: Automatic Statistician


第3部分: AutoML 挑战赛


本部分将深入分析到目前为止AutoML所面临的挑战。


第10章:2015-2018年AutoML Challenge系列分析


下载地址:

https://www.automl.org/book/





*延伸阅读



点击左下角阅读原文”,即可申请加入极市目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~



觉得有用麻烦给个在看啦~  

登录查看更多
5

相关内容

自动机器学习(AutoML)是将机器学习应用于实际问题的过程的自动化过程。AutoML涵盖了从原始数据集到可部署的机器学习模型的完整管道。提出将AutoML作为基于人工智能的解决方案来应对不断增长的应用机器学习的挑战。 AutoML的高度自动化允许非专家使用机器学习模型和技术,而无需首先成为该领域的专家。 从机器学习角度讲,AutoML 可以看作是一个在给定数据和任务上学习和泛化能力非常强大的系统。但是它强调必须非常容易使用;从自动化角度讲,AutoML 则可以看作是设计一系列高级的控制系统去操作机器学习模型,使得模型可以自动化地学习到合适的参数和配置而无需人工干预。

【导读】这本书对自动化机器学习(AutoML)的一般化方法进行了全面的阐述,并且收集了以这些方法为基础的系统的描述和一系列关于自动化机器学习系统领域的挑战。最近,机器学习在商业领域取得的成就和该领域的快速增长对机器学习产生了大量的需求,尤其是可以很容易地使用,并且不需要专家知识的机器学习方法。然而,当前许多表现优异的机器学习方法的大多都依赖人类专家去手动选择适当的机器学习架构以及模型的超参数(深度学习架构或者更加传统的机器学习方法)。为了克服这个问题,AutoML基于优化原理和机器学习本身去逐步实现机器学习的自动化。这本书可以为为研究人员和高年级学生提供一个进入这个快速发展的领域的切入点,同时也为打算在工作中使用AutoML的从业者提供参考。

第一部分 自动机器学习方法

每个机器学习系统都有超参数,而自动化机器学习最基本的任务就是自动设置这些超参数来优化性能。尤其是最近的深度神经网络严重依赖对于神经网络的结构、正则化和优化等超参数的选择。自动优化超参数(HPO)有几个重要的用例:​

  • 减少机器学习应用过程中所需的人力。这在自动化机器学习(AutoML)的上下文中尤其重要。
  • 提高机器学习算法的性能(根据实际问题调整算法);这已经在一些研究中对重要的机器学习基准方法产生了效果。
  • 提高科学研究的再现性和公平性。自动化的HPO显然比手工搜索更具可重复性。它使得不同的方法可以公平的比较,因为不同的方法只有在它们在相同级别的问题上调优时才能公平地进行比较。

第二部分 自动化机器学习系统

越来越多的非领域专家开始学习使用机器学习工具,他们需要非独立的解决方案。机器学习社区通过开源代码为这些用户提供了大量复杂的学习算法和特征选择方法,比如WEKA和mlr。这些开源包需要使用者做出两种选择:选择一种学习算法,并通过设置超参数对其进行定制。然而想要一次性做出正确的选择是非常具有挑战性的,这使得许多用户不得不通过算法的声誉或直觉来进行选择,并将超参数设置为默认值。当然,采用这种方法所获得的性能要比最佳方法进行超参数设置差得多。

第三部分 自动化机器学习面临的挑战

直到十年之前,机器学习还是一门鲜为人知的学科。对于机器学习领域的科学家们来说,这是一个“卖方市场”:他们研究产出了大量的算法,并不断地寻找新的有趣的数据集。大的互联网公司积累了大量的数据,如谷歌,Facebook,微软和亚马逊已经上线了基于机器学习的应用,数据科学竞赛也吸引了新一代的年轻科学家。如今,随着开放性数据的增加,政府和企业不断发掘机器学习的新的应用领域。然而,不幸的是机器学习并不是全自动的:依旧很难确定哪个算法一定适用于哪种问题和如何选择超参数。完全自动化是一个无界的问题,因为总是有一些从未遇到过的新设置。AutoML面临的挑战包括但不限于:

  • 监督学习问题(分类和回归)
  • 特征向量表示问题
  • 数据集特征分布问题(训练集,验证集和测试集分布相同)
  • 小于200兆字节的中型数据集
  • 有限的计算资源
成为VIP会员查看完整内容
0
94
小贴士
相关资讯
自动机器学习(AutoML)最新综述
PaperWeekly
27+阅读 · 2018年11月7日
告别调参,AutoML新书发布
THU数据派
8+阅读 · 2018年10月20日
告别调参,AutoML新书221页免费下载
新智元
10+阅读 · 2018年10月16日
180页机器学习Python简介教程【免费下载】
机器学习算法与Python学习
5+阅读 · 2018年8月18日
相关论文
A Survey on Edge Intelligence
Dianlei Xu,Tong Li,Yong Li,Xiang Su,Sasu Tarkoma,Pan Hui
21+阅读 · 2020年3月26日
Qingyu Guo,Fuzhen Zhuang,Chuan Qin,Hengshu Zhu,Xing Xie,Hui Xiong,Qing He
70+阅读 · 2020年2月28日
Wenwu Zhu,Xin Wang,Peng Cui
18+阅读 · 2020年1月2日
Advances and Open Problems in Federated Learning
Peter Kairouz,H. Brendan McMahan,Brendan Avent,Aurélien Bellet,Mehdi Bennis,Arjun Nitin Bhagoji,Keith Bonawitz,Zachary Charles,Graham Cormode,Rachel Cummings,Rafael G. L. D'Oliveira,Salim El Rouayheb,David Evans,Josh Gardner,Zachary Garrett,Adrià Gascón,Badih Ghazi,Phillip B. Gibbons,Marco Gruteser,Zaid Harchaoui,Chaoyang He,Lie He,Zhouyuan Huo,Ben Hutchinson,Justin Hsu,Martin Jaggi,Tara Javidi,Gauri Joshi,Mikhail Khodak,Jakub Konečný,Aleksandra Korolova,Farinaz Koushanfar,Sanmi Koyejo,Tancrède Lepoint,Yang Liu,Prateek Mittal,Mehryar Mohri,Richard Nock,Ayfer Özgür,Rasmus Pagh,Mariana Raykova,Hang Qi,Daniel Ramage,Ramesh Raskar,Dawn Song,Weikang Song,Sebastian U. Stich,Ziteng Sun,Ananda Theertha Suresh,Florian Tramèr,Praneeth Vepakomma,Jianyu Wang,Li Xiong,Zheng Xu,Qiang Yang,Felix X. Yu,Han Yu,Sen Zhao
15+阅读 · 2019年12月10日
Towards Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools
Anh Truong,Austin Walters,Jeremy Goodsitt,Keegan Hines,C. Bayan Bruss,Reza Farivar
3+阅读 · 2019年9月3日
AutoML: A Survey of the State-of-the-Art
Xin He,Kaiyong Zhao,Xiaowen Chu
32+阅读 · 2019年8月14日
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch,Chandan Singh,Karl Kumbier,Reza Abbasi-Asl,Bin Yu
12+阅读 · 2019年1月14日
Mehdi Mohammadi,Ala Al-Fuqaha,Mohsen Guizani,Jun-Seok Oh
3+阅读 · 2018年10月9日
Quanshi Zhang,Song-Chun Zhu
12+阅读 · 2018年2月7日
Top