时间序列分析一直是研究的热点,在很多场景都有应用。近期,IntechOpen发布一本由Chun-Kit Ngan编辑众多领域专家撰写的新书《Time Series Analysis:Data, Methods, and Applications》,总共六章,110页pdf,提供了时间序列分析的当前信息、发展和趋势,特别是在时间序列数据模式、技术方法和实际应用方面,是值的关注的一本书。

本书旨在为读者提供时间序列分析的当前信息、发展和趋势,特别是在时间序列数据模式、技术方法和实际应用方面。本书分为三节,每节包括两章。第一部分讨论了多元时间序列和模糊时间序列的分析。第2节着重于开发用于时间序列预测和分类的深度神经网络。第3节描述了如何使用时间序列技术解决实际领域的特定问题。本书包含的概念和技术涵盖了时间序列研究的主题,学生、研究人员、实践者和教授将对时间序列预测和分类、数据分析、机器学习、深度学习和人工智能感兴趣。

目录:

  • 第一章:Process Fault Diagnosis for Continuous Dynamic Systems Over Multivariate Time Series (多变量时间序列上连续动态系统的过程故障诊断)
  • 第二章:Fuzzy Forecast Based on Fuzzy Time Series (基于模糊时间序列的模糊预测)
  • 第三章:Training Deep Neural Networks with Reinforcement Learning for Time Series Forecasting (利用强化学习训练深度神经网络进行时间序列预测)
  • 第四章:CNN Approaches for Time Series Classification (CNN方法用于时间序列分类)
  • 第五章:Forecasting Shrimp and Fish Catch in Chilika Lake over Time Series Analysis (通过时间序列分析,预测了赤喀湖虾、鱼的捕捞量)
  • 第六章:Using Gray-Markov Model and Time Series Model to Predict Foreign Direct Investment Trend for Supporting China’s Economic Development (利用Gray马尔可夫模型和时间序列模型预测支持中国经济发展的外商直接投资趋势)
成为VIP会员查看完整内容
37+
0+

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

主题: Effective Linear Models for Learning with Sequences and Time Series

摘要: 在这篇演讲中,演讲者介绍了他的研究小组在开发用于序列和时间序列数据的分类和回归任务的机器学习算法方面所做的一些工作。重点是训练线性模型的算法。尽管这些线性模型被认为过于简单,无法在许多学习任务中实现高精度,但当在丰富的特征空间中进行训练时,它们是非常复杂的模型(如集成和深度学习模型)的有力竞争对手。具有丰富特征的线性模型与复杂的非线性模型一样精确,但训练效率高,易于解释。这种情况下的可解释性意味着模型(加权特征列表)和预测(特征权重之和)对用户是透明的。他首先概述了他们遇到序列和时间序列的重要和广泛的应用领域,讨论了使用序列学习的常用方法,并提出了序列分类和回归任务的算法。他还展示了序列学习的思想如何自然地传递给时间序列数据,并展示了一个从多个符号表示中选择特征的线性模型,实现了最先进的时间序列分类精度。通过组合序列数据的多种表示形式来创建丰富的特征,使得线性模型能够获得高精度、高效的训练和保持可解释性,后者是许多应用中的一个关键要求。

邀请嘉宾: Georgiana Ifrim博士是都柏林大学学院计算机科学学院的助理教授,是SFI机器学习研究培训中心(ML Labs)的联合负责人,同时也是SFI资助的Insight Centre for Data Analytics和VistaMilk Research centres的调查员。她是加州大学计算机科学学院的研究生研究主任。 个人主页:https://people.ucd.ie/georgiana.ifrim

成为VIP会员查看完整内容
9+
0+

题目主题:

Temporal Point Processes Learning for Event Sequences

简介:

时点过程(TPP)是描述和建模连续时间域中事件序列的一个很好的数学框架,它通常带有位置、参与者等附加属性。近年来,越来越多的机器学习模型用于时点过程的学习和推理,在理解、预测和干预不同个体、群体和系统的动态行为方面有着广泛的背景。在大数据时代,利用这种时间事件序列进行有效的学习对企业和社会都具有重要的价值,而传统的基于时间序列的学习方法往往将原始事件离散为等间隔,忽略了时间戳的连续性。

在本教程中,我将首先对时间点过程的预备知识做一个基本的介绍,并通过几个应用实例回顾一些流行的和经典的表单。还将描述基于贝叶斯形式的学习。然后我将介绍点过程学习的最新进展,包括TPP的深度学习和强化学习。最后,我将展示一些新的场景,例如应用TPP模型时的缺失和删失观测,并讨论未来的方向,以便于在时间点过程中的进一步研究。

作者介绍:

Junchi Yan,是上海交通大学计算机科学与工程系和上海交通大学人工智能研究所的终身制独立研究教授。在2018年4月加入SJTU之前,Junchi自2011年4月起一直在IBM Research从事机器学习和计算机视觉研究及应用。在那段时间。曾任IBM中国研究实验室高级研究人员和工业检验首席科学家,并在工业预防性维修项目中广泛应用时间点过程模型。他还曾是IBM T.J.沃森研究中心(约克敦高地)、日本国家信息学研究所(东京)和腾讯人工智能实验室(深圳)的访问研究员。

Liangda Li,是雅虎研究公司搜索和搜索广告团队的资深研究科学家。领导科研团队的垂直搜索排名、查询理解、搜索广告、查询语言分析项目。在加入雅虎研究之前,他在佐治亚理工学院计算机科学学院获得了博士学位,并接受了zhaongyuan Zha教授的指导。2010年,他在上海交通大学计算机学院计算机科学荣誉班获得学士学位。他被授予2010年微软亚洲研究青年研究员奖。他的研究兴趣包括机器学习及其在信息检索和社交网络中的应用。特别是,他专注于各种真实行为数据中的影响建模,如搜索意图理解、城市智能和危机/犯罪。

教程大纲:

  • 时点过程:基础(15分钟)
    • 强度函数建模
    • TPP仿真
    • TPP学习的贝叶斯框架
  • 时间点过程的典型模型(30分钟)
    • 泊松过程
    • 霍克斯过程
    • 自校正过程(非线性霍克斯过程)
    • 时变霍克斯过程
    • 霍克斯过程的混合模型
    • 基于因子分解的特征过程
    • MLE解
    • LS解决方案
  • 时间点过程的深度学习(30分钟)
    • 神经时点过程
    • 时间点过程的GAN
    • 时间点过程的强化学习
  • 实践中的时间点过程(15分钟)
    • 从不完美的观察中学习
    • 从丢失的数据推断
    • 基于特征的随机拼接
    • 超级位置
    • 从扭曲序列中学习
    • 应用:社交网络分析、医疗保健、推荐、视频预告片生成、犯罪分析
    • 开源工具箱
成为VIP会员查看完整内容
8+
0+

书籍介绍: 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。机器学习是人工智能及模式识别领域的共同研究热点,其理论和方法已被广泛应用于解决工程应用和科学领域的复杂问题。本书从机器学习的基础入手,分别讲述了分类、排序、降维、回归等机器学习任务,是入门机器学习的一本好书。

作者: Mehryar Mohri,是纽约大学库兰特数学科学研究所的计算机科学教授,也是Google Research的研究顾问。

大纲介绍:

  • 介绍
  • PAC学习框架
  • rademacher复杂度和VC维度
  • 支持向量机
  • 核方法
  • Boosting
  • 线上学习
  • 多类别分类
  • 排序
  • 回归
  • 算法稳定性
  • 降维
  • 强化学习

作者主页https://cs.nyu.edu/~mohri/

成为VIP会员查看完整内容
15+
0+

Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples.

成为VIP会员查看完整内容
7+
0+

【北京邮电大学】机器学习在材料科学中的应用综述,Machine learning in materials science https://onlinelibrary.wiley.com/doi/pdf/10.1002/inf2.12028

成为VIP会员查看完整内容
5+
0+
Top