项目名称: 超声速气流中液体横向射流表面波演变及近场流动的影响

项目编号: No.11472303

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 李清廉

作者单位: 中国人民解放军国防科技大学

项目金额: 88万元

中文摘要: 表面波是液体射流破碎与雾化的决定性因素。由于射流近场气液作用剧烈、界面演变极快,超声速气流中液体横向射流表面波的研究面临很大困难,长期以来进展缓慢,严重影响了射流破碎机理研究的开展。申请者发展了纳秒级脉冲激光片光成像技术,拍摄到较清晰的射流表面波图像,使基于实验观测的表面波深入研究成为可能。本项目拟发展适用于表面波捕捉的高时空分辨率光学拍摄技术和基于图像的表面波特征提取技术,获取射流表面波几何特征,开展表面波分类研究和特征参数定量分析,看清看懂表面波。研究表面波波形演变规律、细观结构运动规律和波长/振幅增长规律,建立描述射流表面波发展过程的唯象模型。研究射流近场流动的非定常特性,揭示分离区/激波振荡特性与射流表面波特征参数之间的量化关系,探究表面波发展的物理根源。项目研究将显著深化人们对射流界面变形过程的理解,对超声速气流中液体射流破碎的机理研究具有重要的学术意义与实用价值。

中文关键词: 超声速气流;横向射流;表面波;流动稳定性

英文摘要: Surface wave is a decisive factor on the breakup and atomization of liquid jet in supersonic crossflow. Research on surface wave evolvement in crossflow is obstructed by the intensive interaction between supersonic gas stream and liquid, as its hard to capture the evolvement of gas/liquid interface. And this inturn slow down the investigation on the breakup mechanism of liquid jet. The applicants have developed a pulse laser slice imaging technology which had photoed relatively clear picture of liquid jet surface wave in several nano seconds. So it seems possible to study surface wave evolve details now. The application intend to improve the optical imaging technique to capture clear surface wave picture with high temporal and spatial resolution and extract surface wave characteristics from pictures. By getting the geomatrical characteristic of surface wave and classifying the surface wave, the wave will be observed clearly and well understood. By studying the evolvement rule of wave form, small scale structure movement rule and wavelength/amplitude increase rule, a phenomenological model will be presented. The instability of near-field flow being to be studied to analyze the correlation between osillation of seperation region and wave phenomenon. Parameters will be presented to probe the native source of wave development. The research will deepen the understand on the deformation of liquid phase interface, which lays the foundation of investigating the breakup process of liquid jet in supersonic crossflow.

英文关键词: Supersonic Flow;Cross Jet;Surface Wave;Flow Stability

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
88+阅读 · 2022年4月14日
中国能源体系 碳中和路线图,254页pdf
专知会员服务
74+阅读 · 2022年3月23日
专知会员服务
29+阅读 · 2021年7月25日
专知会员服务
34+阅读 · 2021年5月25日
专知会员服务
43+阅读 · 2021年5月24日
中国数据要素市场发展报告(2020~2021),65页pdf
专知会员服务
140+阅读 · 2021年5月11日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
26+阅读 · 2021年2月12日
专知会员服务
41+阅读 · 2020年12月8日
电子烟,脱去“糖衣”
创业邦杂志
0+阅读 · 2022年3月14日
消失的「金三银四」
36氪
0+阅读 · 2022年2月28日
趣解读 | 重构三维植被表型,计算呈现自然之美
中国科学院自动化研究所
0+阅读 · 2021年9月2日
卷积神经网络数学原理解析
算法与数学之美
19+阅读 · 2019年8月23日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
TensorFlow实现神经网络入门篇
机器学习研究会
10+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
22+阅读 · 2022年3月31日
Image Segmentation Using Deep Learning: A Survey
Arxiv
43+阅读 · 2020年1月15日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
53+阅读 · 2018年12月11日
小贴士
相关主题
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
88+阅读 · 2022年4月14日
中国能源体系 碳中和路线图,254页pdf
专知会员服务
74+阅读 · 2022年3月23日
专知会员服务
29+阅读 · 2021年7月25日
专知会员服务
34+阅读 · 2021年5月25日
专知会员服务
43+阅读 · 2021年5月24日
中国数据要素市场发展报告(2020~2021),65页pdf
专知会员服务
140+阅读 · 2021年5月11日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
26+阅读 · 2021年2月12日
专知会员服务
41+阅读 · 2020年12月8日
相关资讯
电子烟,脱去“糖衣”
创业邦杂志
0+阅读 · 2022年3月14日
消失的「金三银四」
36氪
0+阅读 · 2022年2月28日
趣解读 | 重构三维植被表型,计算呈现自然之美
中国科学院自动化研究所
0+阅读 · 2021年9月2日
卷积神经网络数学原理解析
算法与数学之美
19+阅读 · 2019年8月23日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
TensorFlow实现神经网络入门篇
机器学习研究会
10+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员