Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

23
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

0
19
下载
预览

Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US) and major anatomical structures of interest (ventricles, atria and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research.

0
11
下载
预览

The Visual Question Answering (VQA) task combines challenges for processing data with both Visual and Linguistic processing, to answer basic `common sense' questions about given images. Given an image and a question in natural language, the VQA system tries to find the correct answer to it using visual elements of the image and inference gathered from textual questions. In this survey, we cover and discuss the recent datasets released in the VQA domain dealing with various types of question-formats and enabling robustness of the machine-learning models. Next, we discuss about new deep learning models that have shown promising results over the VQA datasets. At the end, we present and discuss some of the results computed by us over the vanilla VQA models, Stacked Attention Network and the VQA Challenge 2017 winner model. We also provide the detailed analysis along with the challenges and future research directions.

0
4
下载
预览

Biomedical image segmentation is an important task in many medical applications. Segmentation methods based on convolutional neural networks attain state-of-the-art accuracy; however, they typically rely on supervised training with large labeled datasets. Labeling datasets of medical images requires significant expertise and time, and is infeasible at large scales. To tackle the lack of labeled data, researchers use techniques such as hand-engineered preprocessing steps, hand-tuned architectures, and data augmentation. However, these techniques involve costly engineering efforts, and are typically dataset-specific. We present an automated data augmentation method for medical images. We demonstrate our method on the task of segmenting magnetic resonance imaging (MRI) brain scans, focusing on the one-shot segmentation scenario -- a practical challenge in many medical applications. Our method requires only a single segmented scan, and leverages other unlabeled scans in a semi-supervised approach. We learn a model of transforms from the images, and use the model along with the labeled example to synthesize additional labeled training examples for supervised segmentation. Each transform is comprised of a spatial deformation field and an intensity change, enabling the synthesis of complex effects such as variations in anatomy and image acquisition procedures. Augmenting the training of a supervised segmenter with these new examples provides significant improvements over state-of-the-art methods for one-shot biomedical image segmentation. Our code is available at https://github.com/xamyzhao/brainstorm.

0
4
下载
预览

Deep learning has been shown successful in a number of domains, ranging from acoustics, images to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, a significant amount of research efforts have been devoted to this area, greatly advancing graph analyzing techniques. In this survey, we comprehensively review different kinds of deep learning methods applied to graphs. We divide existing methods into three main categories: semi-supervised methods including Graph Neural Networks and Graph Convolutional Networks, unsupervised methods including Graph Autoencoders, and recent advancements including Graph Recurrent Neural Networks and Graph Reinforcement Learning. We then provide a comprehensive overview of these methods in a systematic manner following their history of developments. We also analyze the differences of these methods and how to composite different architectures. Finally, we briefly outline their applications and discuss potential future directions.

0
36
下载
预览

Since the proposal of big data analysis and Graphic Processing Unit (GPU), the deep learning technology has received a great deal of attention and has been widely applied in the field of imaging processing. In this paper, we have an aim to completely review and summarize the deep learning technologies for image denoising proposed in recent years. Morever, we systematically analyze the conventional machine learning methods for image denoising. Finally, we point out some research directions for the deep learning technologies in image denoising.

0
3
下载
预览

Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.

0
7
下载
预览

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

0
7
下载
预览

In recent years, Fully Convolutional Networks (FCN) has been widely used in various semantic segmentation tasks, including multi-modal remote sensing imagery. How to fuse multi-modal data to improve the segmentation performance has always been a research hotspot. In this paper, a novel end-toend fully convolutional neural network is proposed for semantic segmentation of natural color, infrared imagery and Digital Surface Models (DSM). It is based on a modified DeepUNet and perform the segmentation in a multi-task way. The channels are clustered into groups and processed on different task pipelines. After a series of segmentation and fusion, their shared features and private features are successfully merged together. Experiment results show that the feature fusion network is efficient. And our approach achieves good performance in ISPRS Semantic Labeling Contest (2D).

0
6
下载
预览

One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision. Due to the data driven approaches of hierarchical feature learning in deep learning frameworks, these advances can be translated to medical images without much difficulty. Several variations of deep convolutional neural networks have been successfully applied to medical images. Especially fully convolutional architectures have been proven efficient for segmentation of 3D medical images. In this article, we describe how to build a 3D fully convolutional network (FCN) that can process 3D images in order to produce automatic semantic segmentations. The model is trained and evaluated on a clinical computed tomography (CT) dataset and shows state-of-the-art performance in multi-organ segmentation.

0
5
下载
预览
小贴士
相关论文
Anomalous Instance Detection in Deep Learning: A Survey
Saikiran Bulusu,Bhavya Kailkhura,Bo Li,Pramod K. Varshney,Dawn Song
19+阅读 · 2020年3月16日
Deep learning for cardiac image segmentation: A review
Chen Chen,Chen Qin,Huaqi Qiu,Giacomo Tarroni,Jinming Duan,Wenjia Bai,Daniel Rueckert
11+阅读 · 2019年11月9日
Yash Srivastava,Vaishnav Murali,Shiv Ram Dubey,Snehasis Mukherjee
4+阅读 · 2019年8月27日
Amy Zhao,Guha Balakrishnan,Frédo Durand,John V. Guttag,Adrian V. Dalca
4+阅读 · 2019年2月25日
Ziwei Zhang,Peng Cui,Wenwu Zhu
36+阅读 · 2018年12月11日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
3+阅读 · 2018年10月11日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
7+阅读 · 2018年9月6日
Andreas Kamilaris,Francesc X. Prenafeta-Boldu
7+阅读 · 2018年7月31日
Feature Fusion through Multitask CNN for Large-scale Remote Sensing Image Segmentation
Shihao Sun,Lei Yang,Wenjie Liu,Ruirui Li
6+阅读 · 2018年7月24日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
相关VIP内容
专知会员服务
60+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
40+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
45+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
29+阅读 · 2019年10月10日
相关资讯
弱监督语义分割最新方法资源列表
专知
7+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
43+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
22+阅读 · 2017年11月16日
【推荐】视频目标分割基础
机器学习研究会
6+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
17+阅读 · 2017年8月31日
Top