Causality is pivotal to our understanding of the world, presenting itself in different forms: information-theoretic and relativistic, the former linked to the flow of information, the latter to the structure of space-time. Leveraging a framework introduced in PRA, 106, 032204 (2022), which formally connects these two notions in general physical theories, we study their interplay. Here, information-theoretic causality is defined through a causal modelling approach. First, we improve the characterization of information-theoretic signalling as defined through so-called affects relations. Specifically, we provide conditions for identifying redundancies in different parts of such a relation, introducing techniques for causal inference in unfaithful causal models (where the observable data does not "faithfully" reflect the causal dependences). In particular, this demonstrates the possibility of causal inference using the absence of signalling between certain nodes. Second, we define an order-theoretic property called conicality, showing that it is satisfied for light cones in Minkowski space-times with $d>1$ spatial dimensions but violated for $d=1$. Finally, we study the embedding of information-theoretic causal models in space-time without violating relativistic principles such as no superluminal signalling (NSS). In general, we observe that constraints imposed by NSS in a space-time and those imposed by purely information-theoretic causal inference behave differently. We then prove a correspondence between conical space-times and faithful causal models: in both cases, there emerges a parallel between these two types of constraints. This indicates a connection between informational and geometric notions of causality, and offers new insights for studying the relations between the principles of NSS and no causal loops in different space-time geometries and theories of information processing.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员