We first exhibit a multimodal image registration task, for which a neural network trained on a dataset with noisy labels reaches almost perfect accuracy, far beyond noise variance. This surprising auto-denoising phenomenon can be explained as a noise averaging effect over the labels of similar input examples. This effect theoretically grows with the number of similar examples; the question is then to define and estimate the similarity of examples. We express a proper definition of similarity, from the neural network perspective, i.e. we quantify how undissociable two inputs $A$ and $B$ are, taking a machine learning viewpoint: how much a parameter variation designed to change the output for $A$ would impact the output for $B$ as well? We study the mathematical properties of this similarity measure, and show how to use it on a trained network to estimate sample density, in low complexity, enabling new types of statistical analysis for neural networks. We analyze data by retrieving samples perceived as similar by the network, and are able to quantify the denoising effect without requiring true labels. We also propose, during training, to enforce that examples known to be similar should also be seen as similar by the network, and notice speed-up training effects for certain datasets.


翻译:我们首先展示了多式图像登记任务,在这个任务中,一个在贴有噪音标签的数据集上受过训练的神经网络几乎完全准确,远远超过噪音差异。这个令人惊讶的自动偏执现象可以被解释为类似输入实例标签上的一种杂音平均效应。这种效应在理论上随着类似例子的数量而随着类似效应的出现而从理论上增加;然后的问题是界定和估计类似实例的相似性。我们从神经网络的角度对相似性作了适当的定义,即从神经网络的角度来量化一个无法分解的两个输入值$A$和$B$,采用一个机器学习的观点:设计用来改变美元输出值的参数变异会在多大程度上影响$B$的产出?我们研究了这一类似度测量的数学特性,并展示了如何在经过培训的网络上使用它来估计样本密度,低复杂性,为神经网络提供新的统计分析类型。我们通过检索网络所认为相似的样本来分析数据,并能够在不需要真实标签的情况下量化分解效果。我们还提议,在培训期间,执行已知的类似效果的例子,以类似的速度看待网络。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
31+阅读 · 2020年9月21日
Arxiv
8+阅读 · 2018年5月1日
Top
微信扫码咨询专知VIP会员