The vertical ground reaction force (vGRF) and its characteristic weight acceptance and push-off peaks measured during walking are important for gait and biomechanical analysis. Current wearable vGRF estimation methods suffer from drifting errors or low generalization performances, limiting their practical application. This paper proposes a novel method for reliably estimating vGRF and its characteristic peaks using data collected from the smart insole, including inertial measurement unit data and the newly introduced center of the pressed sensor data. These data were fused with machine learning algorithms including artificial neural networks, random forest regression, and bi-directional long-short-term memory. The proposed method outperformed the state-of-the-art methods with the root mean squared error, normalized root mean squared error, and correlation coefficient of 0.024 body weight (BW), 1.79% BW, and 0.997 in intra-participant testing, and 0.044 BW, 3.22% BW, and 0.991 in inter-participant testing, respectively. The difference between the reference and estimated weight acceptance and push-off peak values are 0.022 BW and 0.017 BW with a delay of 1.4% and 1.8% of the gait cycle for the intra-participant testing and 0.044 BW and 0.025 BW with a delay of 1.5% and 2.3% of the gait cycle for the inter-participant testing. The results indicate that the proposed vGRF estimation method has the potential to achieve accurate vGRF measurement during walking in free living environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员