Crypto donations now represent a significant fraction of charitable giving worldwide. Nonfungible token (NFT) charity fundraisers, which involve the sale of NFTs of artistic works with the proceeds donated to philanthropic causes, have emerged as a novel development in this space. A unique aspect of NFT charity fundraisers is the significant potential for donors to reap financial gains from the rising value of purchased NFTs. Questions may arise about the motivations of donors in these charity fundraisers, resulting in a negative social image. NFT charity fundraisers thus offer a unique opportunity to understand the economic consequences of a donor's social image. We investigate these effects in the context of a large NFT charity fundraiser. We identify the causal effect of purchasing an NFT within the charity fundraiser on a donor's later market outcomes by leveraging random variation in transaction processing times on the blockchain. Further, we demonstrate a clear pattern of heterogeneity, based on an individual's decision to relist (versus hold) the purchased charity NFTs (a sign of strategic generosity), and based on an individual's degree of social exposure within the NFT marketplace. We show that charity-NFT "relisters" experience significant penalties in the market, in terms of the prices they are able to command on other NFT listings, particularly among those who relist quickly and those who are more socially exposed. Our study underscores the growing importance of digital visibility and traceability, features that characterize crypto-philanthropy, and online philanthropy more broadly.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员