Soft computing tools emerged as most reliable alternatives of traditional regression and statistical methods. In recent times, these tools can predict the optimum material compositions, mechanical and tribological properties of composite materials accurately without much experiment or even without experiment. In the present study, soft computing tools like fuzzy logic, Decision tree, genetic algorithms are employed to predict the reinforcement weight percentage of B4C(Boron Carbide) and Graphite(Gr) along with Aluminum (matrix material) weight percentage for Al2219 with B4C and graphite. The optimized material and tribological properties of Al2219 were also predicted using NSGA II genetic algorithms for multi-objective optimization. It is found that the predictions are at par with earlier ANN (artificial neural network) studies and experimental findings. It can be inferred that inclusion B4C has more impact on enhancement of mechanical properties as well as wear strength compared to Gr.


翻译:软计算工具已成为传统回归与统计方法最可靠的替代方案。近年来,这些工具能够准确预测复合材料的最佳材料组成、力学性能及摩擦学性能,而无需大量实验甚至无需实验。本研究采用模糊逻辑、决策树、遗传算法等软计算工具,预测Al2219基体与B4C(碳化硼)及石墨(Gr)增强体的重量百分比配比。同时,利用NSGA II遗传算法进行多目标优化,预测了Al2219复合材料优化的材料性能与摩擦学性能。结果表明,其预测结果与早期人工神经网络(ANN)研究及实验数据高度吻合。可以推断,与石墨相比,B4C的加入对提升材料力学性能及磨损强度具有更显著的影响。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员