Novelty detection using deep generative models such as autoencoder, generative adversarial networks mostly takes image reconstruction error as novelty score function. However, image data, high dimensional as it is, contains a lot of different features other than class information which makes models hard to detect novelty data. The problem gets harder in multi-modal normality case. To address this challenge, we propose a new way of measuring novelty score in multi-modal normality cases using orthogonalized latent space. Specifically, we employ orthogonal low-rank embedding in the latent space to disentangle the features in the latent space using mutual class information. With the orthogonalized latent space, novelty score is defined by the change of each latent vector. Proposed algorithm was compared to state-of-the-art novelty detection algorithms using GAN such as RaPP and OCGAN, and experimental results show that ours outperforms those algorithms.
翻译:使用诸如自动编码器等深层基因化模型的新颖检测, 基因对抗网络大多将图像重建错误作为新评分功能。 然而, 图像数据, 高维, 包含许多不同的特点, 而非类类信息, 使得模型难以检测新数据。 在多模式正常情况下, 问题变得更难解决。 为了应对这一挑战, 我们建议了一种新的方法, 测量多模式正常化案例的新分, 使用正调潜伏空间。 具体地说, 我们使用正调低位嵌入潜伏空间, 以利用相互类信息解析潜伏空间的特征。 随着正分潜伏空间, 新的评分由每个潜在矢量的变化来定义。 拟议的算法与使用诸如 RaPP 和 OCGAN 等GAN 的现代新颖检测算法相比较, 实验结果表明, 我们的算法优于这些算法。