In audio signal processing, learnable front-ends have shown strong performance across diverse tasks by optimizing task-specific representation. However, their parameters remain fixed once trained, lacking flexibility during inference and limiting robustness under dynamic complex acoustic environments. In this paper, we introduce a novel adaptive paradigm for audio front-ends that replaces static parameterization with a closed-loop neural controller. Specifically, we simplify the learnable front-end LEAF architecture and integrate a neural controller for adaptive representation via dynamically tuning Per-Channel Energy Normalization. The neural controller leverages both the current and the buffered past subband energies to enable input-dependent adaptation during inference. Experimental results on multiple audio classification tasks demonstrate that the proposed adaptive front-end consistently outperforms prior fixed and learnable front-ends under both clean and complex acoustic conditions. These results highlight neural adaptability as a promising direction for the next generation of audio front-ends.


翻译:在音频信号处理中,可学习前端通过优化任务特定表征,已在多种任务中展现出优异性能。然而,其参数一旦训练完成即保持固定,在推理阶段缺乏灵活性,限制了动态复杂声学环境下的鲁棒性。本文提出一种新颖的自适应音频前端范式,通过闭环神经控制器替代静态参数化。具体而言,我们简化了可学习前端LEAF架构,并集成一个神经控制器,通过动态调整逐通道能量归一化实现自适应表征。该神经控制器利用当前及缓冲的过往子带能量,在推理过程中实现输入依赖的自适应调整。在多种音频分类任务上的实验结果表明,所提出的自适应前端在纯净及复杂声学条件下均持续优于先前的固定式与可学习前端。这些结果凸显了神经自适应能力作为下一代音频前端的重要发展方向。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
10+阅读 · 2018年3月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员