This work considers a Stokes flow in a deformable fracture interacting with a linear elastic medium. To this end, we employ a phase-field model to approximate the crack dynamics. Phase-field methods belong to interface-capturing approaches in which the interface is only given by a smeared zone. For multi-domain problems, the accuracy of the coupling conditions is, however, of utmost importance. Here, interface-tracking methods are preferred. The key objective of this work is to construct a robust framework that computes first a crack path via the phase-field method (interface-capturing) and then does an interface-tracking reconstruction. We then discuss several approaches to reconstruct the Eulerian description of the open crack domain. This includes unfitted approaches where a level-set of the crack interface is constructed and an approach where the geometry is re-meshed. Using this reconstructed domain, we can compute the fluid-structure interaction problem between the fluid in the crack and the interacting solid. With the explicit mesh reconstruction of the two domains, we can then use an interface-tracking Arbitrary-Lagrangian-Eulerian (ALE) discretisation approach for the resulting fluid-structure interaction (FSI) problem. Our algorithmic procedure is realised in one final algorithm and one program. We substantiate our approach using several numerical examples based on Sneddon's benchmark and corresponding extensions to Stokes fluid-filled regimes.
翻译:这项工作考虑的是在一个与线性弹性介质互动的变形断裂中流出的斯托克斯流。 为此, 我们使用一个阶段- 现场模型来估计裂缝动态。 阶段- 现场方法属于界面采集方法, 界面只能由一个涂片区来显示。 但是, 对于多领域问题, 混合条件的准确性是极为重要的。 在这里, 界面跟踪方法比较可取 。 这项工作的关键目标是构建一个强大的框架, 该框架首先通过阶段- 实地方法( 内部封存) 来计算裂缝路径, 然后进行界面跟踪重建。 我们然后讨论几种方法, 重建开放裂缝域的 Eulelian 描述。 这包括一些不合适的方法, 用来构建裂缝界面的级别设置, 以及重新校正的方法。 使用这个重新组合的域, 我们可以将裂缝中的液体与互动机制之间的流体结构互动问题 。 在两个领域进行明确的混合重建后, 我们就可以使用一个对等的任意- LAGLA- 和我们一个离性矩阵模型的模型 。