Most of the proposed person re-identification algorithms conduct supervised training and testing on single labeled datasets with small size, so directly deploying these trained models to a large-scale real-world camera network may lead to poor performance due to underfitting. It is challenging to incrementally optimize the models by using the abundant unlabeled data collected from the target domain. To address this challenge, we propose an unsupervised incremental learning algorithm, TFusion, which is aided by the transfer learning of the pedestrians' spatio-temporal patterns in the target domain. Specifically, the algorithm firstly transfers the visual classifier trained from small labeled source dataset to the unlabeled target dataset so as to learn the pedestrians' spatial-temporal patterns. Secondly, a Bayesian fusion model is proposed to combine the learned spatio-temporal patterns with visual features to achieve a significantly improved classifier. Finally, we propose a learning-to-rank based mutual promotion procedure to incrementally optimize the classifiers based on the unlabeled data in the target domain. Comprehensive experiments based on multiple real surveillance datasets are conducted, and the results show that our algorithm gains significant improvement compared with the state-of-art cross-dataset unsupervised person re-identification algorithms.


翻译:为了应对这一挑战,大多数拟议的人重新身份鉴定算法都对规模小的单一标签数据集进行监督培训和测试,因此直接将这些经过训练的模型部署到大规模真实世界摄像网络可能会因配制不足而导致性能不佳。 使用从目标领域收集到的大量无标签数据逐步优化模型具有挑战性。 为了应对这一挑战,我们建议采用一种未经监督的渐进学习算法,即Textusion,这是借助在目标领域对行人spotio-时空模式的转移学习。 具体地说,这种算法首先将经过训练的视觉分类器从小标签源数据集转移到无标签的目标数据集,以便学习行人的空间时空模式。 其次,拟采用巴耶斯融合模型,将学到的空洞-时空模式与视觉特征结合起来,以便实现显著改进的分类。 最后,我们提议采用基于学习到排序的相互促进程序,以便根据未贴标签数据在目标领域逐步优化分类。 以多个真实的标签源数据集为基础的综合实验,以便学习行人空间时空模式学习。 第二,建议采用一种比较性模型,将结果与显著的升级后算法,显示我们未升级的人的升级结果。

6
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
数据集|更大的行人重识别测试集 Market-1501+500k
极市平台
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
数据集|更大的行人重识别测试集 Market-1501+500k
极市平台
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员