We derive a tight upper bound on the probability over $\mathbf{x}=(x_1,\dots,x_\mu) \in \mathbb{Z}^\mu$ uniformly distributed in $ [0,m)^\mu$ that $f(\mathbf{x}) = 0 \bmod N$ for any $\mu$-linear polynomial $f \in \mathbb{Z}[X_1,\dots,X_\mu]$ co-prime to $N$. We show that for $N=p_1^{r_1},...,p_\ell^{r_\ell}$ this probability is bounded by $\frac{\mu}{m} + \prod_{i=1}^\ell I_{\frac{1}{p_i}}(r_i,\mu)$ where $I$ is the regularized beta function. Furthermore, we provide an inverse result that for any target parameter $\lambda$ bounds the minimum size of $N$ for which the probability that $f(\mathbf{x}) \equiv 0 \bmod N$ is at most $2^{-\lambda} + \frac{\mu}{m}$. For $\mu =1$ this is simply $N \geq 2^\lambda$. For $\mu \geq 2$, $\log_2(N) \geq 8 \mu^{2}+ \log_2(2 \mu)\cdot \lambda$ the probability that $f(\mathbf{x}) \equiv 0 \bmod N$ is bounded by $2^{-\lambda} +\frac{\mu}{m}$. We also present a computational method that derives tighter bounds for specific values of $\mu$ and $\lambda$. For example, our analysis shows that for $\mu=20$, $\lambda = 120$ (values typical in cryptography applications), and $\log_2(N)\geq 416$ the probability is bounded by $ 2^{-120}+\frac{20}{m}$. We provide a table of computational bounds for a large set of $\mu$ and $\lambda$ values.


翻译:我们得出一个近20美元( mutbf{x_1,\ dots,x ⁇ mu) 的概率 $20 musb} (美元=p_1, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=m2, 美元=美元=美元=美元=美元=美元=美元=美元=m2, 数字=l=1美元=1美元=美元=美元=m2, 美元=m2x=ma=l=lc, 美元=m2x=m2xx, 美元=m2xxx, 美元=m2xxxx, 美元=l=lxxxxxx, 美元=2xxxxxxxx

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月23日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员