In this work, we propose a new deep learning-based scheme for solving high dimensional nonlinear backward stochastic differential equations (BSDEs). The idea is to reformulate the problem as a global optimization, where the local loss functions are included. Essentially, we approximate the unknown solution of a BSDE using a deep neural network and its gradient with automatic differentiation. The approximations are performed by globally minimizing the quadratic local loss function defined at each time step, which always includes the terminal condition. This kind of loss functions are obtained by iterating the Euler discretization of the time integrals with the terminal condition. Our formulation can prompt the stochastic gradient descent algorithm not only to take the accuracy at each time layer into account, but also converge to a good local minima. In order to demonstrate performances of our algorithm, several high-dimensional nonlinear BSDEs including pricing problems in finance are provided.
翻译:在这项工作中,我们提出了一个新的深层次的基于学习的计划,以解决高维非线性后退随机差分方程式(BSDEs) 。 其想法是将问题重新定位为全球优化, 包括本地损失功能。 基本上, 我们使用深神经网络及其梯度, 以自动区分来大致 BSDE 的未知解决方案。 近似值通过在全球范围内最大限度地减少每个时段界定的四面形当地损失函数, 其中包括终端条件。 这种损失函数是通过将时间的电极分解与终端条件相迭而获得的。 我们的配方可以促使随机梯度梯度梯度下降算法, 不仅考虑到每个时段的准确性, 而且还会汇集到一个良好的本地迷你马。 为了展示我们的算法的性能, 提供了几个高维非线性BSDEs, 包括融资的定价问题 。