Microsatellite instability (MSI) is a tumor phenotype whose diagnosis largely impacts patient care in colorectal cancers (CRC), and is associated with response to immunotherapy in all solid tumors. Deep learning models detecting MSI tumors directly from H&E stained slides have shown promise in improving diagnosis of MSI patients. Prior deep learning models for MSI detection have relied on neural networks pretrained on ImageNet dataset, which does not contain any medical image. In this study, we leverage recent advances in self-supervised learning by training neural networks on histology images from the TCGA dataset using MoCo V2. We show that these networks consistently outperform their counterparts pretrained using ImageNet and obtain state-of-the-art results for MSI detection with AUCs of 0.92 and 0.83 for CRC and gastric tumors, respectively. These models generalize well on an external CRC cohort (0.97 AUC on PAIP) and improve transfer from one organ to another. Finally we show that predictive image regions exhibit meaningful histological patterns, and that the use of MoCo features highlighted more relevant patterns according to an expert pathologist.
翻译:微卫星不稳定性(MSI)是一种肿瘤,其诊断主要影响直肠癌的病人护理,并与所有固态肿瘤的免疫治疗反应有关。从H&E沾染幻灯片中直接检测到 MSI肿瘤的深层次学习模型在改善对 MSI 病人的诊断方面显示了希望。以前用于检测 MSI 的深层次学习模型依靠在图像网络数据集上预先培训的神经网络,该数据库没有任何医学图像。在这项研究中,我们利用最近通过培训神经网络在利用MOCO V2对TCGA 数据集的细胞图象进行自我监督学习的进展。我们表明,这些网络在利用图像网络进行预先培训后,始终超越了对应网络的系统,并获得了通过AUC分别为 0.92 和 0.83 和 0.8 和 气态肿瘤进行 MSI 检测的最新结果。这些模型对外部CRC 组(在 PIP 上的 0.97 AUC ) 进行了全面介绍,并改进了从一个器官向另一个器官的转移。我们最后表明,预测图像区域展示了有意义的历史形态模式,使用MOC特征突出了专家路径的模式。