Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.


翻译:2018年,乳腺癌仍然是一项全球性挑战,在全球范围造成100多万人死亡。为了实现早期乳腺癌检测,全世界卫生组织建议进行X射线乳房X射线X射线造影检查,估计将乳腺癌死亡率降低20-40%。尽管如此,大量假正反反和假负率以及高判读成本、提高质量和获取机会等重大假正反反和假假假假负率、提高质量和高口译成本、改善质量和获取机会等机会。为解决这些限制,最近人们非常有兴趣将深层学习应用到乳房X光X光X光X光X光摄影;然而,获得大量附加说明的数据对为此目的培训深层学习模型构成挑战,以及确保超出培训数据集所代表的人口的范围。在这里,我们提出了一个注解高效的深层学习方法,即(1) 在乳房X光X光X光分类中实现最先进的性能,(2) 成功地推广到数字乳房合成(DBT;“3D乳房X光摄影”)、(3) 检测癌症病人临床前阴性乳房X光X光X光X光检查中的癌症,4个普遍与低筛查率人口有关,以及5个全时,以及5位全时制成型乳房成型X光成型X光成型全时,通过全球平均扫描软件改进了14的准确度检查结果。

14
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员