Classical circuit complexity characterizes parallel computation in purely combinatorial terms, ignoring the physical constraints that govern real hardware. The standard classes $\mathbf{NC}$, $\mathbf{AC}$, and $\mathbf{TC}$ treat unlimited fan-in, free interconnection, and polynomial gate counts as feasible -- assumptions that conflict with geometric, energetic, and thermodynamic realities. We introduce the family of \textit{realizable circuit classes} $\mathbf{RC}_d$, which model computation embedded in physical $d$-dimensional space. Each circuit in $\mathbf{RC}_d$ obeys conservative realizability laws: volume scales as $\mathcal{O}(t^d)$, cross-boundary information flux is bounded by $\mathcal{O}(t^{d-1})$ per unit time, and growth occurs through local, physically constructible edits. These bounds apply to all causal systems, classical or quantum. Within this framework, we show that algorithms with runtime $\omega(n^{d/(d-1)})$ cannot scale to inputs of maximal entropy, and that any $d$-dimensional parallel implementation offers at most a polynomial speed-up of degree $(d-1)$ over its optimal sequential counterpart. In the limit $d\to\infty$, $\mathbf{RC}_\infty(\mathrm{polylog})=\mathbf{NC}$, recovering classical parallelism as a non-physical idealization. By unifying geometry, causality, and information flow, $\mathbf{RC}_d$ extends circuit complexity into the physical domain, revealing universal scaling laws for computation.


翻译:经典电路复杂性以纯组合方式刻画并行计算,忽略了实际硬件的物理约束。标准类 $\mathbf{NC}$、$\mathbf{AC}$ 和 $\mathbf{TC}$ 将无限扇入、自由互连和多门电路视为可行——这些假设与几何、能量和热力学现实相矛盾。我们引入\textit{可实现电路类}族 $\mathbf{RC}_d$,该族模拟嵌入物理 $d$ 维空间的计算。$\mathbf{RC}_d$ 中的每个电路遵循保守可实现定律:体积按 $\mathcal{O}(t^d)$ 缩放,跨边界信息通量每单位时间受限于 $\mathcal{O}(t^{d-1})$,且增长通过局部、物理可构造的编辑实现。这些界限适用于所有因果系统,无论是经典还是量子。在此框架内,我们证明运行时间为 $\omega(n^{d/(d-1)})$ 的算法无法扩展到最大熵输入,且任何 $d$ 维并行实现相对于其最优顺序对应版本最多提供 $(d-1)$ 次的多项式加速。在极限 $d\to\infty$ 下,$\mathbf{RC}_\infty(\mathrm{polylog})=\mathbf{NC}$,将经典并行性恢复为非物理的理想化。通过统一几何、因果性和信息流,$\mathbf{RC}_d$ 将电路复杂性扩展到物理领域,揭示了计算的普适标度律。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员