Understanding the behavior of predictive models with random inputs can be achieved through functional decompositions into sub-models that capture interpretable effects of input groups. Building on recent advances in uncertainty quantification, the existence and uniqueness of a generalized Hoeffding decomposition have been established for correlated input variables, using oblique projections onto suitable functional subspaces. This work focuses on the case of Bernoulli inputs and provides a complete analytical characterization of the decomposition. We show that, in this discrete setting, the associated subspaces are one-dimensional and that the decomposition admits a closed-form representation. One of the main contributions of this study is to generalize the classical Fourier--Walsh--Hadamard decomposition for pseudo-Boolean functions to the correlated case, yielding an oblique version when the underlying distribution is not a product measure, and recovering the standard orthogonal form when independence holds. This explicit structure offers a fully interpretable framework, clarifying the contribution of each input combination and theoretically enabling model reverse engineering. From this formulation, explicit sensitivity measures-such as Sobol' indices and Shapley effects-can be directly derived. Numerical experiments illustrate the practical interest of the approach for decision-support problems involving binary features. The paper concludes with perspectives on extending the methodology to high-dimensional settings and to models involving inputs with finite, non-binary support.
翻译:通过将预测模型分解为捕获输入组可解释效应的子模型,可以理解具有随机输入的预测模型行为。基于不确定性量化的最新进展,利用斜投影到适当函数子空间的方法,已为相关输入变量建立了广义霍夫丁分解的存在性与唯一性。本研究聚焦于伯努利输入情形,提供了该分解的完整解析刻画。我们证明,在此离散设定下,相关子空间为一维,且分解具有闭式表示。本研究的主要贡献之一是将伪布尔函数的经典傅里叶-沃尔什-哈达玛分解推广至相关情形:当底层分布非乘积测度时得到斜交形式,当独立性成立时则恢复标准正交形式。这一显式结构提供了完全可解释的框架,阐明了每种输入组合的贡献,并在理论上支持模型逆向工程。基于此公式,可直接推导出显式敏感性度量(如Sobol'指数和沙普利效应)。数值实验展示了该方法在处理涉及二元特征的决策支持问题中的实用价值。本文最后展望了将该方法扩展至高维设定及涉及有限非二元支撑输入模型的前景。