Robotic manipulation can benefit from wrist-mounted force/torque (F/T) sensors, but conventional F/T sensors can be expensive, difficult to install, and damaged by high loads. We present Visual Force/Torque Sensing (VFTS), a method that visually estimates the 6-axis F/T measurement that would be reported by a conventional F/T sensor. In contrast to approaches that sense loads using internal cameras placed behind soft exterior surfaces, our approach uses an external camera with a fisheye lens that observes a soft gripper. VFTS includes a deep learning model that takes a single RGB image as input and outputs a 6-axis F/T estimate. We trained the model with sensor data collected while teleoperating a robot (Stretch RE1 from Hello Robot Inc.) to perform manipulation tasks. VFTS outperformed F/T estimates based on motor currents, generalized to a novel home environment, and supported three autonomous tasks relevant to healthcare: grasping a blanket, pulling a blanket over a manikin, and cleaning a manikin's limbs. VFTS also performed well with a manually operated pneumatic gripper. Overall, our results suggest that an external camera observing a soft gripper can perform useful visual force/torque sensing for a variety of manipulation tasks.
翻译:机械操纵可以受益于手腕架设的力/力(F/T)传感器,但常规F/T传感器可能费用昂贵,难以安装,而且受到高负荷的破坏。我们展示了视觉力/力(VFTS),这种方法对常规F/T传感器报告的6轴F/T测量进行视觉估计。与使用放在软外表下的内摄像头进行感应负荷的方法相比,我们的方法使用一个带有鱼眼镜的外部照相机,观察软抓手。VFTS包括一个深度学习模型,将一个RGB图像作为输入和输出一个6轴F/T估计值。我们用收集到的传感器数据对模型进行了培训,同时对机器人(Hello机器人公司的Stracht RE1)进行远程操作,以便执行操作操作操作操作操作操作任务。VFTS在发动机电流的基础上完成了F/T估计值的超值,普遍采用新的家居环境,并且支持了与保健有关的三项自主任务:抓住毯子、拉毯子、清洗一个mankin,以及清洁一个mankin的肢体。VFTS还用传感器用传感器对一个软式的图像进行全面观测。