Robotics research has made significant strides in learning, yet mastering basic skills like object placement remains a fundamental challenge. A key bottleneck is the acquisition of large-scale, high-quality data, which is often a manual and laborious process. Inspired by Graspit!, a foundational work that used simulation to automatically generate dexterous grasp poses, we introduce Placeit!, an evolutionary-computation framework for generating valid placement positions for rigid objects. Placeit! is highly versatile, supporting tasks from placing objects on tables to stacking and inserting them. Our experiments show that by leveraging quality-diversity optimization, Placeit! significantly outperforms state-of-the-art methods across all scenarios for generating diverse valid poses. A pick&place pipeline built on our framework achieved a 90% success rate over 120 real-world deployments. This work positions Placeit! as a powerful tool for open-environment pick-and-place tasks and as a valuable engine for generating the data needed to train simulation-based foundation models in robotics.


翻译:机器人学研究在学习方面已取得显著进展,然而掌握物体放置等基本技能仍然是一项根本性挑战。一个关键瓶颈在于获取大规模、高质量数据,这一过程通常是手动且费力的。受Graspit!(一项利用仿真自动生成灵巧抓取姿态的基础性工作)的启发,我们提出了Placeit!,一种用于为刚性物体生成有效放置位置的进化计算框架。Placeit!具有高度通用性,支持从桌面放置到堆叠和插入等多种任务。我们的实验表明,通过利用质量-多样性优化,Placeit!在所有场景下生成多样化有效姿态的性能均显著优于现有先进方法。基于本框架构建的拾放操作流程在120次真实世界部署中取得了90%的成功率。这项工作使Placeit!成为开放环境拾放任务的有力工具,并为生成训练机器人仿真基础模型所需数据提供了宝贵的引擎。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2022年2月24日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年2月4日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
23+阅读 · 2022年2月24日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年2月4日
Arxiv
25+阅读 · 2018年1月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员