The advent of artificial intelligence (AI)-native wireless communication is fundamentally reshaping the design paradigm of next-generation (NextG) systems, where intelligent air interfaces are expected to operate adaptively and efficiently in highly dynamic environments. Conventional orthogonal frequency division multiplexing (OFDM) systems rely heavily on pilots and the cyclic prefix (CP), resulting in significant overhead and reduced spectral efficiency. To address these limitations, we propose an adaptive end-to-end (E2E) transceiver architecture tailored for pilot-free and CP-free wireless systems. The architecture combines AI-driven constellation shaping and a neural receiver through joint training. To enhance robustness against mismatched or time-varying channel conditions, we introduce a lightweight channel adapter (CA) module, which enables rapid adaptation with minimal computational overhead by updating only the CA parameters. Additionally, we present a framework that is scalable to multiple modulation orders within a unified model, significantly reducing model storage requirements. Moreover, to tackle the high peak-to-average power ratio (PAPR) inherent to OFDM, we incorporate constrained E2E training, achieving compliance with PAPR targets without additional transmission overhead. Extensive simulations demonstrate that the proposed framework delivers superior bit error rate (BER), throughput, and resilience across diverse channel scenarios, highlighting its potential for AI-native NextG.


翻译:人工智能原生无线通信的出现正在从根本上重塑下一代无线系统的设计范式,其中智能空口被期望在高度动态的环境中自适应且高效地运行。传统的正交频分复用系统严重依赖导频和循环前缀,导致显著的开销和频谱效率降低。为应对这些局限,我们提出了一种专为无导频和无循环前缀无线系统设计的自适应端到端收发器架构。该架构通过联合训练,将人工智能驱动的星座成形与神经接收器相结合。为增强对失配或时变信道条件的鲁棒性,我们引入了一个轻量级信道适配器模块,该模块仅通过更新适配器参数实现快速自适应,计算开销极小。此外,我们提出了一种可在统一模型内扩展至多种调制阶数的框架,显著降低了模型存储需求。同时,为应对正交频分复用固有的高峰均功率比问题,我们引入了约束端到端训练,在无需额外传输开销的情况下满足峰均功率比目标。大量仿真表明,所提框架在多种信道场景下均实现了优异的误码率、吞吐量和稳健性,凸显了其在人工智能原生下一代无线系统中的潜力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员