We present a comparative study of the accuracy and precision of correlation function methods and full-field inference in cosmological data analysis. To do so, we examine a Bayesian hierarchical model that predicts log-normal fields and their two-point correlation function. Although a simplified analytic model, the log-normal model produces fields that share many of the essential characteristics of the present-day non-Gaussian cosmological density fields. We use three different statistical techniques: (i) a standard likelihood-based analysis of the two-point correlation function; (ii) a likelihood-free (simulation-based) analysis of the two-point correlation function; (iii) a field-level analysis, made possible by the more sophisticated data assimilation technique. We find that (a) standard assumptions made to write down a likelihood for correlation functions can cause significant biases, a problem that is alleviated with simulation-based inference; and (b) analysing the entire field offers considerable advantages over correlation functions, through higher accuracy, higher precision, or both. The gains depend on the degree of non-Gaussianity, but in all cases, including for weak non-Gaussianity, the advantage of analysing the full field is substantial.


翻译:我们对宇宙数据分析中相关功能方法和全场推断的准确性和精确性进行了比较研究,为此,我们研究了一种预测日志正态字段及其两点相关功能的巴伊西亚等级模型。虽然这是一个简化分析模型,但逻辑正态模型产生的领域具有与当今非高加索宇宙密度领域许多基本特征相同的领域。我们使用三种不同的统计技术:(一)对双点相关功能进行标准可能性分析;(二)对两点相关功能进行无可能性(模拟)分析;(三)通过更先进的数据同化技术进行实地分析。我们发现:(a) 用于记录关联功能可能性的标准假设可产生重大偏差,这一问题通过基于模拟的推断得到缓解;(b) 通过提高准确性、更精确性或两者兼顾,对整个字段的关联功能提供相当大的优势。收益取决于非伽西系数的程度,但在所有案例中,包括分析非撒西的显著优势方面,均取决于非撒西的优势。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
机器学习速查手册,135页pdf
专知会员服务
336+阅读 · 2020年3月15日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
机器学习速查手册,135页pdf
专知会员服务
336+阅读 · 2020年3月15日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员