I introduce renaming-enriched sets (rensets for short), which are algebraic structures axiomatizing fundamental properties of renaming (also known as variable-for-variable substitution) on syntax with bindings. Rensets compare favorably in some respects with the well-known foundation based on nominal sets. In particular, renaming is a more fundamental operator than the nominal swapping operator and enjoys a simpler, equationally expressed relationship with the variable freshness predicate. Together with some natural axioms matching properties of the syntactic constructors, rensets yield a truly minimalistic characterization of lambda-calculus terms as an abstract datatype -- one involving a recursively enumerable set of unconditional equations, referring only to the most fundamental term operators: the constructors and renaming. This characterization yields a recursion principle, which (similarly to the case of nominal sets) can be improved by incorporating Barendregt's variable convention. When interpreting syntax in semantic domains, my renaming-based recursor is easier to deploy than the nominal recursor. My results have been validated with the proof assistant Isabelle/HOL.
翻译:我引入了重命名增加的数据集(变换短),这些元件是代数结构,这些代数结构在用绑定的语法中将重新命名的基本特性(也称为变数变数替代)作为抽象数据类型(abamda-calcululs 术语的真正最起码的定性 -- -- 其中涉及一系列可循环和可累积的无条件方程式,仅涉及最基本的术语操作者:构建者和重新命名。这一定性产生一种递归原则,通过纳入 Barendregt 的变量协议,可以改进(与名义互换操作者类似) 。在解释语义学构建者的特性时,我基于重命名的递归/变异性协议产生一个真正最起码的羊羔-计算术语的定性,作为抽象数据类型 -- -- 一个包含一系列可循环和可累积的无条件方程式,仅指最基本术语操作者:构建者和重新命名者。这种定性产生一种递归原则,通过纳入 Barendregt 的变式协议可以改进。在解释语义域中的合成税时,我基于重新命名的递校验的递归结果/变制结果要比Lsal real real realsuralsuralsurviewdsildsildsil be to be to be to be to to to to to to to pildildildatedalmaldaldatedatesild L remaldaldalddaldaldaldaldaldaldaldaldaldaldaldaldddddddaldaldald.